Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ FEBS Lettersarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
FEBS Letters
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
FEBS Letters
Article . 2006 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
FEBS Letters
Article . 2007
versions View all 3 versions

Determination of the Plk4/Sak consensus phosphorylation motif using peptide spots arrays

Authors: Leung, Genie C.; Ho, Cynthia S.W.; Blasutig, Ivan M.; Murphy, James M.; Sicheri, Frank;

Determination of the Plk4/Sak consensus phosphorylation motif using peptide spots arrays

Abstract

The family of polo like kinases (Plks) regulate cell cycle progression through key functional roles in mitosis. While the four mammalian family members, Plk1‐4, share overlapping functions, each member possesses unique functions that may be dictated in part by their ability to phosphorylate different substrates. Numerous cellular substrates for Plk1, 2, and 3 have been characterized, but the protein targets for Plk4/Sak remain unknown. We have purified the kinase domain of Sak and demonstrated that it has robust kinase activity in vitro. Using in vitro kinase assays on peptide spots arrays, we determined the consensus phosphorylation motif for Sak to be ¥‐[Ile/Leu/Val]‐Ser/Thr‐ϕ‐ϕ‐X‐¥/Pro (where ϕ denotes a large hydrophobic residue, ¥ is a charged residue dependent on the context of the surrounding sequence, and residues in brackets are unfavoured). This consensus phosphorylation motif differs from that of Plk1, and provides a basis for future studies to identify in vivo substrates of Sak.

Keywords

Consensus phosphorylation motif, Polo like kinases, Plk4/Sak, Amino Acid Motifs, Protein Array Analysis, Protein kinase specificity, Protein Serine-Threonine Kinases, Protein Structure, Tertiary, Substrate Specificity, Mice, Structure-Activity Relationship, Peptide arrays, Animals, Phosphorylation, Peptides, Protein Processing, Post-Translational

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Average
Top 10%
Top 10%
bronze