Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geneticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article . 2012 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article
Data sources: UnpayWall
Genetics
Article . 2012
versions View all 2 versions

Membrane Phospholipid Asymmetry Counters the Adverse Effects of Sterol Overloading in the Golgi Membrane of Drosophila

Authors: Zhiguo, Ma; Zhonghua, Liu; Xun, Huang;

Membrane Phospholipid Asymmetry Counters the Adverse Effects of Sterol Overloading in the Golgi Membrane of Drosophila

Abstract

Abstract Cholesterol and phospholipids serve as structural and functional components of cellular membranes in all eukaryotes. Heterogeneity in cholesterol and phospholipid content both within and between different organelles is an important characteristic of eukaryotic membranes. How this heterogeneity is achieved and orchestrated to maintain proper cellular physiology remains poorly understood. We previously found that overexpression of the Drosophilaoxysterol-binding protein (OSBP) leads to sterol accumulation in the Golgi apparatus. Here, we show that Osbp overexpression in a set of neuroendocrine neurons compromises the function of the Golgi apparatus. It impairs trafficking of the neuropeptide bursicon and results in post-eclosion behavior defects characterized by unexpanded wings. We performed a genetic screen to identify modifiers that suppress the unexpanded wing phenotype. A putative phospholipid flippase-encoding gene, CG33298, was validated, suggesting that a membrane-asymmetry-directed mechanism balances cholesterol chaos within the Golgi membranes. Since the functional connection between cholesterol metabolism and the activity of phospholipid flippase has been implicated in studies in yeast and worms, our findings here support an evolutionarily conserved causal link between cholesterol homeostasis and phospholipid asymmetry that maintains normal cellular physiology.

Related Organizations
Keywords

Male, Neurons, Invertebrate Hormones, Secretory Vesicles, Neuropeptides, Golgi Apparatus, Genes, Insect, Intracellular Membranes, Animals, Genetically Modified, Protein Transport, Cholesterol, Gene Expression Regulation, Animals, Drosophila Proteins, Homeostasis, Wings, Animal, Drosophila, Carrier Proteins, Phospholipids

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Average
Average
Top 10%
hybrid