Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Experimental Cell Re...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Experimental Cell Research
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions

RhoD is a Golgi component with a role in anterograde protein transport from the ER to the plasma membrane

Authors: Blom M; Reis K; Nehru V; Blom H; Gad AK; Aspenström P;

RhoD is a Golgi component with a role in anterograde protein transport from the ER to the plasma membrane

Abstract

RhoD is a member of the Rho GTPase family and it coordinates actin dynamics and membrane trafficking. Activation of RhoD results in formation of filopodia, dissolution of stress fibers, and the subsequent formation of short actin bundles. In addition, RhoD localizes to early endosomes and recycling endosomes, and has a regulatory role in endosome trafficking. In this study, we report on a function of RhoD in the regulation of Golgi homeostasis. We show that manipulation of protein and activation levels of RhoD, as well as of its binding partner WHAMM, result in derailed localization of Golgi stacks. Moreover, vesicle trafficking from the endoplasmic reticulum to the plasma membrane via the Golgi apparatus measured by the VSV-G protein is severely hampered by manipulation of RhoD or WHAMM. In summary, our studies demonstrate a novel role for this member of the Rho GTPases in the regulation of Golgi function.

Keywords

rho GTP-Binding Proteins, Golgi Apparatus, Membrane Proteins, Intracellular Membranes, Endoplasmic Reticulum, Protein Transport, Gene Knockdown Techniques, COS Cells, Chlorocebus aethiops, Animals, Homeostasis, Humans, Transport Vesicles, Microtubule-Associated Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Top 10%