Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Bacteriol...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Bacteriology
Article . 2012 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions

The Structure of Mlc Titration Factor A (MtfA/YeeI) Reveals a Prototypical Zinc Metallopeptidase Related to Anthrax Lethal Factor

Authors: Qingping, Xu; Anna-Katharina, Göhler; Anne, Kosfeld; Dennis, Carlton; Hsiu-Ju, Chiu; Heath E, Klock; Mark W, Knuth; +7 Authors

The Structure of Mlc Titration Factor A (MtfA/YeeI) Reveals a Prototypical Zinc Metallopeptidase Related to Anthrax Lethal Factor

Abstract

ABSTRACT MtfA of Escherichia coli (formerly YeeI) was previously identified as a regulator of the phosphoenolpyruvate (PEP)-dependent:glucose phosphotransferase system. MtfA homolog proteins are highly conserved, especially among beta- and gammaproteobacteria. We determined the crystal structures of the full-length MtfA apoenzyme from Klebsiella pneumoniae and its complex with zinc (holoenzyme) at 2.2 and 1.95 Å, respectively. MtfA contains a conserved H 149 E 150 XXH 153 +E 212 +Y 205 metallopeptidase motif. The presence of zinc in the active site induces significant conformational changes in the region around Tyr205 compared to the conformation of the apoenzyme. Additionally, the zinc-bound MtfA structure is in a self-inhibitory conformation where a region that was disordered in the unliganded structure is now observed in the active site and a nonproductive state of the enzyme is formed. MtfA is related to the catalytic domain of the anthrax lethal factor and the Mop protein involved in the virulence of Vibrio cholerae , with conservation in both overall structure and in the residues around the active site. These results clearly provide support for MtfA as a prototypical zinc metallopeptidase (gluzincin clan).

Keywords

Models, Molecular, Antigens, Bacterial, Amino Acid Motifs, Bacterial Toxins, Molecular Sequence Data, Metalloendopeptidases, Crystallography, X-Ray, Klebsiella pneumoniae, Zinc, Bacterial Proteins, Catalytic Domain, Metalloproteases, Amino Acid Sequence, Sequence Alignment, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Average
Top 10%
Top 10%
bronze