Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Growth Hormone & IGF...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Growth Hormone & IGF Research
Article . 2002 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Impaired cardiac excitation–contraction coupling in ventricular myocytes from Ames dwarf mice with IGF-I deficiency

Authors: Jun Ren; Holly M. Brown-Borg;

Impaired cardiac excitation–contraction coupling in ventricular myocytes from Ames dwarf mice with IGF-I deficiency

Abstract

Growth hormone (GH) and insulin-like growth factor-I (IGF-I) are involved in the regulation of cardiovascular function. GH/IGF-I deficiency is associated with impaired cardiac performance manifested as reduced left ventricular ejection fraction and diastolic filling. This study was to determine the impact of IGF-I deficiency on single cardiac myocyte excitation-contraction (E-C) coupling. Ventricular myocytes were isolated from adult Ames dwarf mice and age-matched wild-type siblings. Dwarf mice are characterized by severe IGF-I deficiency. Mechanical properties were evaluated using a video edge detection system. Myocytes were electrically stimulated at 0.5 Hz. The contractile properties analysed included peak shortening (PS), time to peak shortening (TPS) and time to 90% relengthening (TR(90)), and maximal velocities of shortening/relengthening (+/-d L/d t). Intracellular Ca(2+) transients were evaluated by fura-2 fluorescence microscopy. Dwarf mice exhibited significantly reduced body and heart weights and severely deficient plasma IGF-I. Myocytes from dwarf mice displayed significantly smaller cell lengths (CLs), prolonged TPS/TR(90) and reduced +/-d L/d t compared with the wild-type littermates. The absolute PS was similar although PS/CL was enhanced in the dwarf group. Myocytes from dwarf animals displayed reduced peak intracellular Ca(2+) levels and slowed intracellular Ca(2+) clearing associated with a comparable resting intracellular Ca(2+). Furthermore, myocytes from the dwarf hearts were equally responsive to an elevation in extracellular Ca(2+) and exhibited an augmented stepwise decrease in response to minimal increase in stimulating frequencies compared with those from the wild-type group. These results suggest that deficiency in IGF-I may be directly associated with cardiac E-C coupling dysfunction at the ventricular myocyte level.

Related Organizations
Keywords

Male, Dose-Response Relationship, Drug, Heart Ventricles, Myocardium, Mice, Transgenic, Myocardial Contraction, Mice, Microscopy, Fluorescence, Animals, Calcium, Insulin-Like Growth Factor I, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Average