Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2010 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Conserved microRNA targeting in Drosophila is as widespread in coding regions as in 3′UTRs

Authors: Schnall-Levin, Michael; Berger, Bonnie; Zhao, Yong; Perrimon, Norbert;

Conserved microRNA targeting in Drosophila is as widespread in coding regions as in 3′UTRs

Abstract

MicroRNAs (miRNAs) are a class of short noncoding RNAs that regulate protein-coding genes posttranscriptionally. In animals, most known miRNA targeting occurs within the 3′UTR of mRNAs, but the extent of biologically relevant targeting in the ORF or 5′UTR of mRNAs remains unknown. Here, we develop an algorithm (MinoTar— mi R N A O RF Tar gets) to identify conserved regulatory motifs within protein-coding regions and use it to estimate the number of preferentially conserved miRNA-target sites in ORFs. We show that, in Drosophila , preferentially conserved miRNA targeting in ORFs is as widespread as it is in 3′UTRs and that, while far less abundant, conserved targets in Drosophila 5′UTRs number in the hundreds. Using our algorithm, we predicted a set of high-confidence ORF targets and selected seven miRNA-target pairs from among these for experimental validation. We observed down-regulation by the miRNA in five out of seven cases, indicating our approach can recover functional sites with high confidence. Additionally, we observed additive targeting by multiple sites within a single ORF. Altogether, our results demonstrate that the scale of biologically important miRNA targeting in ORFs is extensive and that computational tools such as ours can aid in the identification of such targets. Further evidence suggests that our results extend to mammals, but that the extent of ORF and 5′UTR targeting relative to 3′UTR targeting may be greater in Drosophila .

Keywords

MicroRNAs, Open Reading Frames, Animals, Drosophila, 3' Untranslated Regions, Algorithms

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    134
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
134
Top 10%
Top 10%
Top 1%
bronze