Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Science Advancesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Science Advances
Article . 2022 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Science Advances
Article . 2022
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions

Differential metabolic requirement governed by transcription factor c-Maf dictates innate γδT17 effector functionality in mice and humans

Authors: Xu Chen; Yihua Cai; Xiaoling Hu; Chuanlin Ding; Liqing He; Xiang Zhang; Fuxiang Chen; +1 Authors

Differential metabolic requirement governed by transcription factor c-Maf dictates innate γδT17 effector functionality in mice and humans

Abstract

Cellular metabolism has been proposed to govern distinct γδ T cell effector functions, but the underlying molecular mechanisms remain unclear. We show that interleukin-17 (IL-17)–producing γδ T (γδT17) and interferon-γ (IFN-γ)–producing γδ T (γδT1) cells have differential metabolic requirements and that the rate-limiting enzyme isocitrate dehydrogenase 2 (IDH2) acts as a metabolic checkpoint for their effector functions. Intriguingly, the transcription factor c-Maf regulates γδT17 effector function through direct regulation of IDH2 promoter activity. Moreover, mTORC2 affects the expression of c-Maf and IDH2 and subsequent IL-17 production in γδ T cells. Deletion of c-Maf in γδ T cells reduces metastatic lung cancer development, suggesting c-Maf as a potential target for cancer immune therapy. We show that c-Maf also controls IL-17 production in human γδ T cells from peripheral blood and in oral cancers. These results demonstrate a critical role of the transcription factor c-Maf in regulating γδT17 effector function through IDH2-mediated metabolic reprogramming.

Related Organizations
Keywords

T-Lymphocytes, Interleukin-17, Receptors, Antigen, T-Cell, gamma-delta, Interferon-gamma, Mice, Proto-Oncogene Proteins c-maf, Animals, Humans, MafF Transcription Factor, Biomedicine and Life Sciences

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Average
Top 10%
Green
gold