Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CORE (RIOXX-UK Aggre...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Pathology
Article . 2014 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Pathology
Article
License: CC BY
Data sources: UnpayWall
versions View all 3 versions

Identification of cellular and genetic drivers of breast cancer heterogeneity in genetically engineered mouse tumour models

Authors: Melchor, Lorenzo; Molyneux, Gemma; Mackay, Alan; Magnay, Fiona-Ann; Atienza, María; Kendrick, Howard; Nava-Rodrigues, Daniel; +7 Authors

Identification of cellular and genetic drivers of breast cancer heterogeneity in genetically engineered mouse tumour models

Abstract

AbstractThe heterogeneous nature of mammary tumours may arise from different initiating genetic lesions occurring in distinct cells of origin. Here, we generated mice in which Brca2, Pten and p53 were depleted in either basal mammary epithelial cells or luminal oestrogen receptor (ER)‐negative cells. Basal cell‐origin tumours displayed similar histological phenotypes, regardless of the depleted gene. In contrast, luminal ER‐negative cells gave rise to diverse phenotypes, depending on the initiating lesions, including both ER‐negative and, strikingly, ER‐positive invasive ductal carcinomas. Molecular profiling demonstrated that luminal ER‐negative cell‐origin tumours resembled a range of the molecular subtypes of human breast cancer, including basal‐like, luminal B and ‘normal‐like’. Furthermore, a subset of these tumours resembled the ‘claudin‐low’ tumour subtype. These findings demonstrate that not only do mammary tumour phenotypes depend on the interactions between cell of origin and driver genetic aberrations, but also multiple mammary tumour subtypes, including both ER‐positive and ‐negative disease, can originate from a single epithelial cell type. This is a fundamental advance in our understanding of tumour aetiology. © 2014 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

Keywords

Time Factors, Breast Neoplasms, Mice, Mammary Glands, Animal, Animals, Humans, Genetic Predisposition to Disease, Cell Proliferation, BRCA2 Protein, Mice, Knockout, Carcinoma, Ductal, Breast, PTEN Phosphohydrolase, Epithelial Cells, R1, Gene Expression Regulation, Neoplastic, Disease Models, Animal, Cell Transformation, Neoplastic, Phenotype, Receptors, Estrogen, Claudins, Female

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    53
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
53
Top 10%
Top 10%
Top 10%
Green
hybrid