Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2003 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-Inserm
Article . 2003
Data sources: HAL-Inserm
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-CEA
Article . 2003
Data sources: HAL-CEA
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions

Tip60 Acetyltransferase Activity Is Controlled by Phosphorylation

Authors: Lemercier, Claudie; Legube, Gaëlle; Caron, Cécile; Louwagie, Mathilde; Garin, Jérôme; Trouche, Didier; Khochbin, Saadi;

Tip60 Acetyltransferase Activity Is Controlled by Phosphorylation

Abstract

Here we show that the phosphorylation of histone acetyltransferase Tip60, a target of human immunodeficiency virus, type 1-encoded transactivator Tat, plays a crucial role in the control of its catalytic activity. Baculovirus-based expression and purification of Tip60 combined with mass spectrometry allowed the identification of serines 86 and 90 as two major sites of phosphorylation in vivo. The phosphorylation of Tip60 was found to modulate its histone acetyltransferase activity. One of the identified phosphorylated serines, Ser-90, was within a consensus cyclin B/Cdc2 site. Ser-90 was specifically phosphorylated in vitro by the cyclin B/Cdc2 complex. Accordingly, the phosphorylation of Tip60 was enhanced after drug-induced arrest of cells in G(2)/M. This G(2)/M-dependent phosphorylation of Tip60 was abolished by treating cells with a specific inhibitor of the cyclin-dependent kinase, roscovitin. All together, these results strongly suggest a G(2)/M-dependent control of Tip60 activity.

Keywords

G2 Phase, MESH: Enzyme Activation, 570, MESH: Mutation, [SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Sequence Data, 610, MESH: Amino Acid Sequence, Lysine Acetyltransferase 5, Histones, MESH: Histone Acetyltransferases, Acetyltransferases, [SDV.BBM] Life Sciences [q-bio]/Biochemistry, Molecular Biology, Serine, Humans, MESH: Serine, Amino Acid Sequence, Phosphorylation, Molecular Biology, Histone Acetyltransferases, MESH: Histones, MESH: Humans, MESH: Molecular Sequence Data, MESH: Phosphorylation, MESH: Acetyltransferases, MESH: Hela Cells, Enzyme Activation, MESH: G2 Phase, Mutation, HeLa Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    55
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
55
Top 10%
Top 10%
Top 10%
Green
gold