Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PLoS ONEarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2012 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2013
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2012
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2012
Data sources: DOAJ
versions View all 4 versions

Reciprocal Regulation of Annexin A2 and EGFR with Her-2 in Her-2 Negative and Herceptin-Resistant Breast Cancer

Authors: Praveenkumar K Shetty; Sanjay I Thamake; Swati Biswas; Sonny L Johansson; Jamboor K Vishwanatha;

Reciprocal Regulation of Annexin A2 and EGFR with Her-2 in Her-2 Negative and Herceptin-Resistant Breast Cancer

Abstract

Alternative survival pathways are commonly seen to be upregulated upon inhibition of receptor tyrosine kinases (RTK), including Her-2. It is established that treatment with Herceptin leads to selective overexpression and activation of epidermal growth factor receptor (EGFR) and Src which further contributes to oncogenesis in Herceptin resistant and triple negative breast cancer (TNBC) patients. Here, we show a co-regulated upregulation in the expression of Annexin A2 (AnxA2), a known substrate of Src and one of the regulators of EGFR receptor endocytosis, in Herceptin resistant and Her-2 negative breast cancer. Immunohistochemical expression analysis revealed a reciprocal regulation between Her-2 and AnxA2 in breast cancer clinical samples as well as in cell lines as confirmed by protein and RNA analysis. The siRNA and Herceptin mediated downregulation/inhibition of Her-2 in Her-2 amplified cells induced AnxA2 expression and membrane translocation. In this study we report a possible involvement of AnxA2 in maintaining constitutively activated EGFR downstream signaling intermediates and hence in cell proliferation, migration and viability. This effect was consistent in Herceptin resistant JIMT-1 cells as well as in Her-2 negative breast cancer. The siRNA mediated AnxA2 downregulation leads to increased apoptosis, decreased cell viability and migration. Our studies further indicate the role of AnxA2 in EGFR-Src membrane bound signaling complex and ligand induced activation of downstream signaling pathways. Targeting this AnxA2 dependent positive regulation of EGFR signaling cascade may be of therapeutic value in Her-2 negative breast cancer.

Keywords

Cell Survival, Receptor, ErbB-2, Science, Apoptosis, Breast Neoplasms, Antibodies, Monoclonal, Humanized, Ligands, Cell Movement, Cell Line, Tumor, Humans, Annexin A2, Q, R, Immunohistochemistry, ErbB Receptors, Drug Combinations, Phenotype, Drug Resistance, Neoplasm, Medicine, Female, Proteoglycans, Collagen, Laminin, Research Article, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    62
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
62
Top 10%
Top 10%
Top 10%
Green
gold