Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neurochemical Resear...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neurochemical Research
Article . 1994 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Subcellular distribution of carbonic anhydrase and Na+,K+-ATPase in the brain of the hyt/hyt hypothyroid mice

Authors: Jun Li; Sien Yao Chow;

Subcellular distribution of carbonic anhydrase and Na+,K+-ATPase in the brain of the hyt/hyt hypothyroid mice

Abstract

Activities of carbonic anhydrase and Na+,K(+)-ATPase in tissue homogenates and in subcellular fractions from different brain regions were studied in inherited primary hypothyroid (hyt/hyt) mice. The body weight, the weight of different brain regions, and the plasma thyroxine and triiodothyronine levels of hyt/hyt mice were significantly lower than those of the age-matched hyt/+ controls. In tissue homogenates of cerebral cortex, brain stem and cerebellum of hypothyroid mice, the activity of carbonic anhydrase (units/mg protein) was 59.2, 57.6, and 43.2%, and the activity of Na+,K(+)-ATPase (nmol Pi/mg protein/min) was 73.7, 74.4 and 68.7%, respectively, of that in corresponding regions of euthyroid littermates. The decrease in enzyme activity in tissue homogenates was also reflected in different subcellular fractions. In cerebral cortex and brain stem, carbonic anhydrase activity in cytosol, myelin and mitochondrial fractions of hypothyroid mice was about 45-50% of that in euthyroid mice, while in cerebellum the carbonic anhydrase activity in these subcellular fractions of hyt/hyt mice was only 33-38% of that in hyt/+ controls. Na+,K(+)-ATPase activity in myelin fraction of different brain regions of hyt/hyt mice was about 34-42% of that in hyt/+ mice, while in mitochondria, synaptosome and microsome fractions were about 44-52, 46-53, and 66-68%, respectively of controls. These data indicate that the activity of both carbonic anhydrase and Na+,K(+)-ATPase was affected more in the myelin than other subcellular fractions and more in the cerebellum than cerebral cortex and brain stem by deficiency of thyroid hormones.(ABSTRACT TRUNCATED AT 250 WORDS)

Related Organizations
Keywords

Cerebral Cortex, Male, Aging, Body Weight, Brain, Mice, Inbred Strains, Organ Size, Mice, Mutant Strains, Mitochondria, Mice, Cytosol, Hypothyroidism, Organ Specificity, Cerebellum, Microsomes, Animals, Female, Myelin Sheath, Brain Stem, Carbonic Anhydrases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Average
Average