Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Molecular...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Molecular Biology
Article . 1979 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Gene duplications in the structural evolution of chymotrypsin

Authors: A D, McLachlan;

Gene duplications in the structural evolution of chymotrypsin

Abstract

Chymotrypsin and other members of the serine protease enzyme family have a structure built from two similar domains, each of which is a hydrogen-bonded barrel, containing six antiparallel strands of beta-sheet bonded in the order ABCFED-A …. The folding patterns of the domains have been re-examined by several newly improved shape comparison methods to see whether the barrels could have evolved by gene duplication, as proposed by Matthews and Blow (Birktoft & Blow, 1972). The domains have a similar hydrogen-bond pattern, the same shear number (defined in this paper) for the twist of the barrel, and the cores of their β-sheets can be superimposed so that 46 topologically equivalent α-carbons fit within a root-mean-square distance of 2.43 A and a larger set of 57 α-carbons fit within 3.4 A. These results are highly significant when judged against shape comparisons of many other proteins with themselves, and give strong evidence for gene duplication. The duplication does not include any SS bridges. Both domains have a surprisingly symmetrical structure of two halves ABC, DEF paired round a dyad axis, and the half-domains are each made of two loops twisted in an L-shape, since the second strand (B or E) is bent into two halves B1, B2 or E1, E2. The cores of the four half-domains, each of 23 α-carbons, superimpose in pairs with root-mean-square distances ranging from 1.79 to 2.45 A. In the entire molecule the half-domains are related by a screw dyad which converts domain I strands (ABC) (DEF) into domain II strands (DEF) (ABC) superimposing the six strands with a root-mean-square distance of 2.35 A. These observations suggest that the Chymotrypsin barrel originally evolved from a closely-linked dimer of two intertwined half-domains which became united into one. domain by gene duplication. The enzyme evolved from a second dimer of two full domains and a second duplication. The bacterial protease B from Streptomyces griseus shows the same structural repeats and is consistent with the gene duplication hypothesis. Improved methods for shape comparison of proteins have been developed which are very fast and reliable.

Related Organizations
Keywords

Models, Molecular, Genes, Models, Chemical, Protein Conformation, Chymotrypsin, Hydrogen Bonding, Biological Evolution, Peptide Hydrolases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    551
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
551
Top 1%
Top 0.1%
Top 10%