Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Human Mutationarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Human Mutation
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Human Mutation
Article . 2013 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Human Mutation
Article . 2014
versions View all 2 versions

The Sac1 Domain of SYNJ 1 Identified Mutated in a Family with Early‐Onset Progressive P arkinsonism with Generalized Seizures

Authors: Catharine E, Krebs; Siamak, Karkheiran; James C, Powell; Mian, Cao; Vladimir, Makarov; Hossein, Darvish; Gilbert, Di Paolo; +6 Authors

The Sac1 Domain of SYNJ 1 Identified Mutated in a Family with Early‐Onset Progressive P arkinsonism with Generalized Seizures

Abstract

This study aimed to elucidate the genetic causes underlying early-onset Parkinsonism (EOP) in a consanguineous Iranian family. To attain this, homozygosity mapping and whole-exome sequencing were performed. As a result, a homozygous mutation (c.773G>A; p.Arg258Gln) lying within the NH2 -terminal Sac1-like inositol phosphatase domain of polyphosphoinositide phosphatase synaptojanin 1 (SYNJ1), which has been implicated in the regulation of endocytic traffic at synapses, was identified as the disease-segregating mutation. This mutation impaired the phosphatase activity of SYNJ1 against its Sac1 domain substrates in vitro. We concluded that the SYNJ1 mutation identified here is responsible for the EOP phenotype seen in our patients probably due to deficiencies in its phosphatase activity and consequent impairment of its synaptic functions. Our finding not only opens new avenues of investigation in the synaptic dysfunction mechanisms associated with Parkinsonism, but also suggests phosphoinositide metabolism as a novel therapeutic target for Parkinsonism.

Keywords

Adult, Male, Genotype, Brain, Genes, Recessive, Sequence Analysis, DNA, Polymorphism, Single Nucleotide, Phosphoric Monoester Hydrolases, Consanguinity, HEK293 Cells, Parkinsonian Disorders, Humans, Epilepsy, Generalized, Exome, Female, Age of Onset, Sequence Alignment, Phylogeny

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    303
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
303
Top 1%
Top 1%
Top 1%
bronze