Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Seminars in Cell and...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Seminars in Cell and Developmental Biology
Article . 2004 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Lysophosphatidic acid and sphingosine 1-phosphate biology: the role of lipid phosphate phosphatases

Authors: Pyne, Susan; Kong, Kok-Choi; Darroch, Peter I;

Lysophosphatidic acid and sphingosine 1-phosphate biology: the role of lipid phosphate phosphatases

Abstract

The biological actions of the lysolipid agonists sphingosine 1-phosphate and lysophosphatidic acid, in addition to other bioactive lipid phosphates such as phosphatidic acid and ceramide 1-phosphate, can be influenced by a family of lipid phosphate phosphatases (LPP), including LPP1, LPP2, LPP3, the Drosophila homologues Wunen (Wun) and Wunen2 (Wun2) and sphingosine 1-phosphate phosphatases 1 and 2 (SPP1, SPP2). This review describes the characteristic of these enzymes and their potential physiological roles in regulating intracellular and extracellular actions and amounts of these lipids in addition to the involvement of these phosphatases in development.

Keywords

570, Phosphatidate Phosphatase, 610, Membrane Proteins, Phosphoric Monoester Hydrolases, Protein Structure, Tertiary, Receptors, G-Protein-Coupled, Pharmacy and materia medica, Sphingosine, Animals, Humans, Lysophospholipids

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    76
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
76
Top 10%
Top 10%
Top 10%