Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Developmentarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Development
Article . 1992 . Peer-reviewed
Data sources: Crossref
Development
Article . 1992
versions View all 2 versions

Isolation and expression of two novel Wnt/wingless gene homologues in Drosophila

Authors: J, Russell; A, Gennissen; R, Nusse;

Isolation and expression of two novel Wnt/wingless gene homologues in Drosophila

Abstract

Abstract Wingless (wg), the Drosophila homologue of the mouse Wnt-1 proto-oncogene, is a segment polarity gene essential in each segment for normal Drosophila development. We here report the isolation of two novel Drosophila Wnt homologues, DWni-2 and DWnt-3, and thus the existence of a Wnt/wingless gene family in Drosophila. DWnt-2 and DWnt-3 map to chromosome 2 position 45E and chromosome X position 17A/B, respectively. DWnt-2 and DWni-3, like the other known Wnt genes, encode amino-terminal signal peptides suggesting that the gene products are secreted proteins. The putative translation product of DWnt-2 and the carboxy-terminal half of the deduced DiVzii-3 product are both rich in conserved cysteine residues. In comparison with other Wnt gene products, mostly about 40 × 103 relative molecular mass, the DWnt-3 protein has an extended amino terminus and a long internal insert, and its predicted relative molecular mass is 113 × 103. The expression patterns of these two Wnt/wg homologues are dynamic during Drosophila embryogenesis. The distribution of DWnt-2 transcripts is predominantly segmented, with the additional presence of transcripts in the presumptive gonads. Transcripts of both DWnt-2 and DWnt-3 appear to be associated with limb primordia in the embryo and may therefore specify limb development. DWnt-3 is also expressed in mesodermal and neurogenic regions. The distribution of D Wnt-3 transcripts in cells of the central nervous system (CNS) during Drosophila embryogenesis suggests that DWnt-3 could be involved in CNS development.

Related Organizations
Keywords

Central Nervous System, Sequence Homology, Amino Acid, Molecular Sequence Data, Chromosome Mapping, Gene Expression, Molecular Probe Techniques, Extremities, Mice, Drosophila melanogaster, Genes, Animals, Amino Acid Sequence

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    69
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
69
Top 10%
Top 10%
Top 10%