Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cellular ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cellular Biochemistry
Article . 2012 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Mutagenesis studies of the β I domain metal ion binding sites on integrin αVβ3 ligand binding affinity

Authors: Joel, Raborn; Bing-Hao, Luo;

Mutagenesis studies of the β I domain metal ion binding sites on integrin αVβ3 ligand binding affinity

Abstract

AbstractThree divalent cation binding sites in the integrin β I domain have been shown to regulate ligand binding and adhesion. However, the degree of ligand binding and adhesion varies among integrins. The αLβ2 and α4β7 integrins show an increase in ligand binding affinity and adhesion when one of their ADMIDAS (adjacent to MIDAS, or the metal ion‐dependent adhesion site) residues is mutated. By contrast, the α2β1, α5β1, and αIIbβ3 integrins show a decrease in binding affinity and adhesion when their ADMIDAS is mutated. Our study here indicated that integrin αVβ3 had lower affinity when the ADMIDAS was mutated. By comparing the primary sequences of these integrin subunits, we propose that one residue associated with the MIDAS (β3 Ala252) may account for these differences. In the β1 integrin subunit, the corresponding residue is also Ala, whereas in both β2 and β7 integrin subunits, it is Asp. We mutated the β3 residue Ala252 to Asp and combined this mutant with mutations of one or two ADMIDAS residues. The mutant A252D showed reduced ligand binding affinity and adhesion. The ligand binding affinity and adhesion were increased when this A252D mutant was paired with mutations of one ADMIDAS residue. But when paired with mutations of two ADMIDAS residues the mutant nearly abolished ligand‐binding ability, which was restored by the activating glycosylation mutation. Our study suggests that the variation of this residue contributes to the different ligand binding affinities and adhesion abilities among different integrin families. J. Cell. Biochem. 113: 1190–1197, 2012. © 2011 Wiley Periodicals, Inc.

Related Organizations
Keywords

Binding Sites, Metals, Mutation, Cell Adhesion, Fibrinogen, Humans, Integrin alphaVbeta3, Ligands, Cell Line, Fibronectins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Average
Top 10%