Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular and Cellul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Biology
Article . 2002 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions

Identification of a Family of Mastermind-Like Transcriptional Coactivators for Mammalian Notch Receptors

Authors: Lizi Wu; Tao Sun; Tao Sun; Ping Gao; Karla Kobayashi; James D. Griffin;

Identification of a Family of Mastermind-Like Transcriptional Coactivators for Mammalian Notch Receptors

Abstract

The molecular mechanisms by which Notch receptors induce diverse biological responses are not fully understood. We recently cloned a mammalian homologue of the Mastermind gene of Drosophila melanogaster, MAML1 (Mastermind-like-1 molecule) and determined that it functions as a transcriptional coactivator for Notch receptors. In this report, we characterize two additional genes in this Mastermind-like gene family: MAML2 and MAML3. The three MAML genes are widely expressed in adult tissues but exhibit distinct expression patterns in mouse early spinal cord development. All MAML proteins localize to nuclear bodies, share a conserved basic domain in their N termini that binds to the ankyrin repeat domain of Notch, and contain a transcriptional activation domain in their C termini. Moreover, as determined by using coimmunoprecipitation assays, each MAML protein was found to be capable of forming a multiprotein complex with the intracellular domain of each Notch receptor (ICN1 to -4) and CSL in vivo. However, MAML3 bound less efficiently to the ankyrin repeat domain of Notch1. Also, in U20S cells, whereas MAML1 and MAML2 functioned efficiently as coactivators with each of the Notch receptors to transactivate a Notch target HES1 promoter construct, MAML3 functioned more efficiently with ICN4 than with other forms of ICN. Similarly, MAML1 and MAML2 amplified Notch ligand (both Jagged2 and Delta1)-induced transcription of the HES-1 gene, whereas MAML3 displayed little effect. Thus, MAML proteins may modify Notch signaling in different cell types based on their own expression levels and differential activities and thereby contribute to the diversity of the biological effects resulting from Notch activation.

Related Organizations
Keywords

Ankyrins, Cell Nucleus, Dose-Response Relationship, Drug, Blotting, Western, Molecular Sequence Data, Membrane Proteins, Blotting, Northern, Ligands, Cell Line, DNA-Binding Proteins, Mice, Microscopy, Fluorescence, COS Cells, Animals, Drosophila Proteins, Humans, Insect Proteins, Amino Acid Sequence, Luciferases, In Situ Hybridization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    230
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
230
Top 1%
Top 1%
Top 10%
bronze