Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2003 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Small GTPase Rah/Rab34 Is Associated with Membrane Ruffles and Macropinosomes and Promotes Macropinosome Formation

Authors: Peng, Sun; Hironobu, Yamamoto; Shiro, Suetsugu; Hiroaki, Miki; Tadaomi, Takenawa; Takeshi, Endo;

Small GTPase Rah/Rab34 Is Associated with Membrane Ruffles and Macropinosomes and Promotes Macropinosome Formation

Abstract

Macropinocytosis is an efficient process for the uptake of nutrients and solute macromolecules into cells from the external environment. Macropinosomes, which are surrounded by actin, are formed from the cell surface membrane ruffles and migrate toward the cell center. We have cloned the entire coding sequence of a member of the Rab family small GTPases, Rah/Rab34. It lacked a consensus sequence for GTP-binding/GTPase domain. Although wild-type Rah exhibited extremely low GTPase activity in vitro, it exerted appreciable GTPase activity in vivo. In fibroblasts, Rah was colocalized with actin to the membrane ruffles and membranes of relatively large vesicles adjacent to the ruffles. These vesicles were identified as macropinosomes on the basis of several criteria. Rah and Rab5 coexisted in some, but not all, macropinosomes. Rah was predominantly associated with nascent macropinosomes, whereas Rab5 was present in endosomes at later stages. The number of macropinosomes in the cells overexpressing Rah increased about 2-fold. The formation of macropinosomes by the treatment of platelet-derived growth factor or phorbol ester was also facilitated by Rah but suppressed by a dominant-negative Rah. Rah-promoted macropinosome formation was retarded by dominant-negative mutants of Rac1 and WAVE2, which are essential for membrane ruffling. These results imply that Rah is required for efficient macropinosome formation from the membrane ruffles.

Keywords

Base Sequence, Sequence Homology, Amino Acid, Molecular Sequence Data, Endosomes, Intracellular Membranes, GTP Phosphohydrolases, Mice, Microscopy, Fluorescence, Animals, Pinocytosis, Amino Acid Sequence, Cloning, Molecular, DNA Primers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    98
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
98
Top 10%
Top 10%
Top 10%
gold