Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mechanisms of Develo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Development
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Development
Article . 2002
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mechanisms of Development
Article . 2002 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL Descartes
Article . 2002
Data sources: HAL Descartes
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL INRAE
Article . 2002
Data sources: HAL INRAE
versions View all 7 versions

A P-insertion screen identifying novel X-linked essential genes in Drosophila

Authors: Bourbon, Henri-Marc; Gonzy-Treboul, Geneviève; Peronnet, Frédérique; Alin, Marie-Francoise; Ardourel, Claude; Benassayag, Corinne; Cribbs, David; +6 Authors

A P-insertion screen identifying novel X-linked essential genes in Drosophila

Abstract

The recent determination and annotation of the entire euchromatic sequence of the Drosophila melanogaster genome predicted the existence of about 13600 different genes (Science 287 (2000) 2185; http://www.fruitfly.org/annot/index.html). In parallel, the Berkeley Drosophila Genome Project (BDGP) has undertaken systematic P-insertion screens, to isolate new lethals and misexpressing lines. To date, however, the genes of the X chromosome have been under-represented in the screens performed. In order both to characterize several X-linked genes of prime interest to our laboratories and contribute to the collection of lethal P-insertions available to the community, we performed a P-insertion mutagenesis of the X chromosome. Using the PlacW and PGawB P-elements as mutagens, we generated two complementary sets of enhancer-trap lines, l(1)(T)PL and l(1)(T)PG, respectively, which both contain a reporter gene whose developmental expression can be monitored when driven by nearby enhancer sequences. We report here the characterization of 260 new insertions, mapping to 133 different genes or predicted CGs. Of these, 83 correspond to genes for which no lethal mutation had yet been reported. For 64 of those, we could confirm that lethality was solely due to the P-element insertion. The primary molecular data, reporter gene expression patterns (observed in embryos, third instar larvae and adult ovaries) and proposed CG assignment for each strain can be accessed and updated on our website at the following address: http://www-cbd.ups-tlse.fr:8080/screen.

Country
France
Keywords

Male, Embryology, Genetic Linkage, [SDV.BBM]Life Sciences [q-bio]/Biochemistry, Genes, Insect, Lethal, Animals, Genetically Modified, Genes, Reporter, MESH: Animals, Developmental, MESH: Mutagenesis, MESH: Enhancer Elements (Genetics), Linkage (Genetics), Gene Expression Regulation, Developmental, MESH: Lac Operon, MESH: Gene Expression Regulation, MESH: Genes, Drosophila melanogaster, Enhancer Elements, Genetic, Lac Operon, Female, 570, X Chromosome, Genetically Modified, Crosses, MESH: Drosophila melanogaster, Genetic, Insertional, [SDV.BBM] Life Sciences [q-bio]/Biochemistry, Molecular Biology, Animals, Enhancer Elements (Genetics), Molecular Biology, Reporter, Crosses, Genetic, MESH: X Chromosome, MESH: Crosses, MESH: Male, Mutagenesis, Insertional, Gene Expression Regulation, Genes, Mutagenesis, Genes, Lethal, MESH: Female, MESH: Linkage (Genetics), Insect, Developmental Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    161
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
161
Top 10%
Top 10%
Top 1%
hybrid