Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ BMC Cancerarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Cancer
Article . 2015 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Cancer
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Cancer
Article . 2016
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2015
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Cancer
Article
License: Springer TDM
versions View all 4 versions

Downregulation of EphA5 by promoter methylation in human prostate cancer

Authors: Li, Shibao; Zhu, Yingfeng; Ma, Chunguang; Qiu, Zhenhua; Zhang, Xinju; Kang, Zhihua; Wu, Zhiyuan; +7 Authors

Downregulation of EphA5 by promoter methylation in human prostate cancer

Abstract

EphA5 is a member of the Eph/ephrin family and plays a critical role in the regulation of carcinogenesis. A significant reduction of EphA5 transcripts in high-grade prostate cancer tissue was shown using a transcriptomic analysis, compared to the low-grade prostate cancer tissue. As less is known about the mechanism of EphA5 downregulation and the function of EphA5, here we investigated the expression and an epigenetic change of EphA5 in prostate cancer and determined if these findings were correlated with clinicopathologic characteristics of prostate cancer.Seven prostate cell lines (RWPE-1, LNCap, LNCap-LN3, CWR22rv-1, PC-3, PC-3M-LN4, and DU145), thirty-nine BPH, twenty-two primary prostate carcinomas, twenty-three paired noncancerous and cancerous prostate tissues were examined via qRT-PCR, methylation-specific PCR, bisulfite sequencing, immunohistochemistry and western blotting. The role of EphA5 in prostate cancer cell migration and invasion was examined by wound healing and transwell assay.Downregulation or loss of EphA5 mRNA or protein expression was detected in 28 of 45 (62.2%) prostate carcinomas, 2 of 39 (5.1%) hyperplasias, and all 6 prostate cancer cell lines. Methylation of the EphA5 promoter region was present in 32 of 45 (71.1%) carcinoma samples, 3 of 39 (7.7%) hyperplasias, and the 6 prostate cancer cell lines. Among 23 paired prostate carcinoma tissues, 16 tumor samples exhibited the hypermethylation of EphA5, and 15 of these 16 specimens (93.8%) shown the downregulation of EphA5 expression than that of their respectively matched noncancerous samples. Immunostaining analysis demonstrated that the EphA5 protein was absent or down-regulated in 10 of 13 (76.9%) available carcinoma samples, and 8 of these 10 samples (80.0%) exhibited hypermethylation. The frequency of EphA5 methylation was higher in cancer patients with an elevated Gleason score or T3-T4 staging. Following the treatment of 6 prostate cancer cell lines with 5-aza-2'-deoxycytidine, the levels of EphA5 mRNA were significantly increased. Prostate cancer cells invasion and migration were significantly suppressed by ectopic expression of EphA5 in vitro.Our study provides evidence that EphA5 is a potential target for epigenetic silencing in primary prostate cancer and is a potentially valuable prognosis predictor and thereapeutic marker for prostate cancer.

Related Organizations
Keywords

Male, Cancer Research, Prostatic Neoplasms, Receptor, EphA5, DNA Methylation, Middle Aged, Gene Expression Regulation, Neoplastic, Oncology, Cell Line, Tumor, Genetics, Biomarkers, Tumor, Humans, RNA, Messenger, Promoter Regions, Genetic, Research Article, Aged, Neoplasm Staging

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    46
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
46
Top 10%
Top 10%
Top 10%
Green
gold