Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Current Opinion in N...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Opinion in Neurobiology
Article . 1996 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Olfactory mechanisms in Drosophila melanogaster

Authors: Dean P. Smith;

Olfactory mechanisms in Drosophila melanogaster

Abstract

Genetic approaches are beginning to provide valuable insights into the function of specific gene products in olfaction. Analysis of Drosophila mutants that affect olfactory responses are defining components of the olfactory signaling mechanisms. Mutations in the genes paralytic and Scutoid cause olfactory defects, as do mutations in genes encoding products that mediate visual responses. In addition, members of the family of invertebrate odorant-binding proteins have been identified in Drosophila and may play an important role in the olfactory process.

Keywords

Olfactory Pathways, Receptors, Odorant, Sodium Channels, Biomechanical Phenomena, Smell, Drosophila melanogaster, Genes, Mutation, Odorants, Sensation Disorders, Animals, Visual Pathways

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Average
Top 10%
Top 10%