Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cancer Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancer Research
Article
Data sources: UnpayWall
Cancer Research
Article . 2010 . Peer-reviewed
Data sources: Crossref
Cancer Research
Article . 2010
versions View all 2 versions

MET Receptor Sequence Variants R970C and T992I Lack Transforming Capacity

Authors: Jeffrey W, Tyner; Luke B, Fletcher; Ellen Q, Wang; Wayne F, Yang; Michael L, Rutenberg-Schoenberg; Carol, Beadling; Motomi, Mori; +4 Authors

MET Receptor Sequence Variants R970C and T992I Lack Transforming Capacity

Abstract

Abstract High-throughput sequencing promises to accelerate the discovery of sequence variants, but distinguishing oncogenic mutations from irrelevant “passenger” mutations remains a major challenge. Here we present an analysis of two sequence variants of the MET receptor (hepatocyte growth factor receptor) R970C and T992I (also designated R988C and T1010I). Previous reports indicated that these sequence variants are transforming and contribute to oncogenesis. We screened patients with chronic lymphocytic leukemia (CLL), acute myeloid leukemia (AML), chronic myelomonocytic leukemia (CMML), colorectal cancer, endometrial cancer, thyroid cancer, or melanoma, as well as individuals without cancer, and found these variants at low frequencies in most cohorts, including normal individuals. No evidence of increased phosphorylation or transformative capacity by either sequence variant was found. Because small-molecule inhibitors for MET are currently in development, it will be important to distinguish between oncogenic sequence variants and rare single-nucleotide polymorphisms to avoid the use of unnecessary, and potentially toxic, cancer therapy agents. Cancer Res; 70(15); 6233–7. ©2010 AACR.

Keywords

Proto-Oncogene Proteins c-met, Polymorphism, Single Nucleotide, Mice, Cell Transformation, Neoplastic, Neoplasms, Animals, Humans, Protein Isoforms, Receptors, Growth Factor, Amino Acid Sequence, Phosphorylation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    67
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
67
Top 10%
Top 10%
Top 10%
bronze