Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Geneticsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Genetics
Article . 1997 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature Genetics
Article . 1997
versions View all 2 versions

Defects in the rhodopsin kinase gene in the Oguchi form of stationary night blindness

Authors: S, Yamamoto; K C, Sippel; E L, Berson; T P, Dryja;

Defects in the rhodopsin kinase gene in the Oguchi form of stationary night blindness

Abstract

Oguchi disease is a recessively inherited form of stationary night blindness due to malfunction of the rod photoreceptor mechanism. Patients with this disease show a distinctive golden-brown colour of the fundus that occurs as the retina adapts to light, called the Mizuo phenomenon. Recently a defect in arrestin, a member of the rod phototransduction pathway, was found to cause this disease in some Japanese patients. As rhodopsin kinase works with arrestin in shutting off rhodopsin after it has been activated by a photon of light, it is reasonable to propose that some cases of Oguchi disease might be caused by defects in rhodopsin kinase. This report describes an analysis of the arrestin and rhodopsin kinase genes in three unrelated cases of Oguchi disease. No defects in arrestin were detected, but all three cases had mutations in the rhodopsin kinase gene. Two cases were found to be homozygous for a deletion encompassing exon 5, predicted to lead to a nonfunctional protein. The third case was a compound heterozygote with two allelic mutations, a missense mutation (Val380Asp) affecting a residue in the catalytic domain, and a frameshift mutation (Ser536(4-bp del)) resulting in truncation of the carboxy terminus. Our results indicate that null mutations in the rhodopsin kinase gene are a cause of Oguchi disease and extend the known genetic heterogeneity in congenital stationary night blindness.

Related Organizations
Keywords

Arrestin, Base Sequence, G-Protein-Coupled Receptor Kinase 1, DNA Mutational Analysis, Molecular Sequence Data, Genes, Recessive, Exons, Night Blindness, Humans, Eye Proteins, Protein Kinases, Alleles, Polymorphism, Single-Stranded Conformational, Sequence Deletion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    263
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
263
Top 10%
Top 1%
Top 1%