Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Proceedings of the National Academy of Sciences
Article . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions

Development of insulin resistance in mice lacking PGC-1α in adipose tissues

Authors: Kleiner, Sandra; Mepani, Rina J; Laznik, Dina; Ye, Li; Jurczak, Michael J; Jornayvaz, François; Estall, Jennifer L; +3 Authors

Development of insulin resistance in mice lacking PGC-1α in adipose tissues

Abstract

Reduced peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) expression and mitochondrial dysfunction in adipose tissue have been associated with obesity and insulin resistance. Whether this association is causally involved in the development of insulin resistance or is only a consequence of this condition has not been clearly determined. Here we studied the effects of adipose-specific deficiency of PGC-1α on systemic glucose homeostasis. Loss of PGC-1α in white fat resulted in reduced expression of the thermogenic and mitochondrial genes in mice housed at ambient temperature, whereas gene expression patterns in brown fat were not altered. When challenged with a high-fat diet, insulin resistance was observed in the mutant mice, characterized by reduced suppression of hepatic glucose output. Resistance to insulin was also associated with an increase in circulating lipids, along with a decrease in the expression of genes regulating lipid metabolism and fatty acid uptake in adipose tissues. Taken together, these data demonstrate a critical role for adipose PGC-1α in the regulation of glucose homeostasis and a potentially causal involvement in the development of insulin resistance.

Country
Switzerland
Related Organizations
Keywords

Adipose Tissue/metabolism, Mice, Knockout, Knockout, Glucose Tolerance Test, Dietary Fats, Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha, Mice, Adipose Tissue, Trans-Activators, Animals, Homeostasis, Insulin Resistance, Trans-Activators/genetics/physiology, Dietary Fats/administration & dosage, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    271
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
271
Top 1%
Top 10%
Top 1%
bronze