Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 1996
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Biology
Article . 1996 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Lens-Specific Expression of PDGF-A Alters Lens Growth and Development

Authors: Reneker, Lixing W.; Overbeek, Paul A.;

Lens-Specific Expression of PDGF-A Alters Lens Growth and Development

Abstract

The vertebrate lens provides an in vivo model to study the molecular mechanisms by which growth factors influence development decisions. In this study, we have investigated the expression patterns of platelet-derived growth factor (PDGF) and PDGF receptors during murine eye development by in situ hybridization. Postnatally, PDGF-A is highly expressed in the iris and ciliary body, the ocular tissues closest to the germinative zone of the lens, a region where most proliferation of lens epithelial cells occurs. PDGF-A is also present in the corneal endothelium anterior to the lens epithelium in embryonic and early postnatal eyes. PDGF-B is expressed in the iris and ciliary body as well as in the vascular cells which surround the lens during early eye development. In the lens, expression of PDGF-alpha receptor (PDGF-alphaR), a receptor that can bind both PDGF-A and PDGF-B, is restricted to the lens epithelium throughout life. The expression of PDGF-alphaR in the lens epithelial cells and PDGF (A- and B-chains) in the ocular tissues adjacent to the lens suggests that PDGF signaling may play a key role in regulating lens development. To further examine how PDGF affects lens development in vivo, we generated transgenic mice that express human PDGF-A in the lens under the control of the alphaA-crystallin promoter. The transgenic mice exhibit lenticular defects that result in cataracts. The percentage of surface epithelial cells in S-phase is increased in transgenic lenses compared to their nontransgenic littermates. Higher than normal levels of cyclin A and cyclin D2 expression were also detected in transgenic lens epithelium. These results together suggest that PDGF-A can induce a proliferative response in lens epithelial cells. The lens epithelial cells in the transgenic mice also exhibit characteristics of differentiating fiber cells. For example, the transgenic lens epithelial cells are slightly elongated, contain larger and less condensed nuclei, and express fiber-cell-specific beta-crystallins. Our results suggest that PDGF-A normally acts as a proliferative factor for the lens epithelial cells in vivo. Elevated levels of PDGF-A enhance proliferation, but also appear to induce some aspects of the fiber cell differentiation pathway.

Related Organizations
Keywords

Aging, Receptor, Platelet-Derived Growth Factor alpha, Transcription, Genetic, Mice, Transgenic, Embryonic and Fetal Development, Mice, Cyclins, Lens, Crystalline, Animals, Cyclin D2, Humans, Receptors, Platelet-Derived Growth Factor, RNA, Messenger, Promoter Regions, Genetic, Molecular Biology, In Situ Hybridization, Platelet-Derived Growth Factor, Gene Expression Regulation, Developmental, Cell Differentiation, Epithelial Cells, Cell Biology, Crystallins, Developmental Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    106
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
106
Top 10%
Top 10%
Top 10%
hybrid