Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemistry and Cel...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemistry and Cell Biology
Article . 2004 . Peer-reviewed
License: CSP TDM
Data sources: Crossref
versions View all 2 versions

Hyposmotic activation of ICl,swell in rabbit nonpigmented ciliary epithelial cells involves increased ClC-3 trafficking to the plasma membrane

Authors: John P, Vessey; Chanjuan, Shi; Christine Ab, Jollimore; Kelly T, Stevens; Miguel, Coca-Prados; Steven, Barnes; Melanie Em, Kelly;

Hyposmotic activation of ICl,swell in rabbit nonpigmented ciliary epithelial cells involves increased ClC-3 trafficking to the plasma membrane

Abstract

In mammalian nonpigmented ciliary epithelial (NPE) cells, hyposmotic stimulation leading to cell swelling activates an outwardly rectifying Cl– conductance (ICl,swell), which, in turn, results in regulatory volume decrease. The aim of this study was to determine whether increased trafficking of intracellular ClC-3 Cl channels to the plasma membrane could contribute to the ICl,swell following hyposmotic stimulation. Our results demonstrate that hyposmotic stimulation reversibly activates an outwardly rectifying Cl– current that is inhibited by phorbol-12-dibutyrate and niflumic acid. Transfection with ClC-3 antisense, but not sense, oligonucleotides reduced ClC-3 expression as well as ICl,swell. Intracellular dialysis with 2 different ClC-3 antibodies abolished activation of ICl,swell. Immunofluorescence microscopy showed that hyposmotic stimulation increased ClC-3 immunoreactivity at the plasma membrane. To determine whether this increased expression of ClC-3 at the plasma membrane could be due to increased vesicular trafficking, we examined membrane dynamics with the fluorescent membrane dye FM1-43. Hyposmotic stimulation rapidly increased the rate of exocytosis, which, along with ICl,swell, was inhibited by the phosphoinositide-3-kinase inhibitor wortmannin and the microtubule disrupting agent, nocodazole. These findings suggest that ClC-3 channels contribute to ICl,swell following hyposmotic stimulation through increased trafficking of channels to the plasma membrane.Key words: ClC-3, NPE, cell swelling, membrane trafficking, ciliary body epithelium.

Related Organizations
Keywords

Patch-Clamp Techniques, Cell Membrane, Ciliary Body, Electric Conductivity, Epithelial Cells, Cell Line, Protein Transport, Hypotonic Solutions, Chloride Channels, Animals, Rabbits

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Average
Top 10%
Top 10%