Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Fluoresce...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Fluorescence
Article . 2006 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Regionalization of Plasma Membrane-Bound Flavoproteins of Cerebellar Granule Neurons in Culture by Fluorescence Energy Transfer Imaging

Authors: Alejandro K, Samhan-Arias; Miguel A, García-Bereguiaín; Francisco Javier, Martín-Romero; Carlos, Gutiérrez-Merino;

Regionalization of Plasma Membrane-Bound Flavoproteins of Cerebellar Granule Neurons in Culture by Fluorescence Energy Transfer Imaging

Abstract

Flavoproteins are components of plasma membrane redox chains, which have been suggested to play major roles in neuronal activity and survival. We found that the red/orange autofluorescence of mature primary cultures of cerebellar granule neurons (8-9 days in vitro) was largely quenched by millimolar concentrations of dithionite added to the extracellular medium, and pointed out that nearly 50% of this autofluorescence was due to plasma membrane-bound flavoproteins. We report in this work that the lipophilic neuronal plasma membrane markers N-(3-triethylammoniumpropyl)-4-(4-(4-(diethylamino)phenyl)butadienyl)-pyridinium dibromide (RH-414) and N-(3-triethylammoniumpropyl)-4-(6-(4-(diethylamino)phenyl)hexatrienyl)pyridinium dibromide (FM4-64) can form fluorescence energy transfer donor-acceptor pairs with flavoproteins with calculated R (0) values between 3.7 and 4.2 nm. The quantification of the efficiency of fluorescence energy transfer with different concentrations of acceptor dyes has been worked out with re-suspended neurons. Using quantitative images of the neurons in culture, acquired with a CCD camera attached to an epifluorescence microscope, regionalization of the plasma membrane-bound flavoproteins of cerebellar granule neurons has been achieved from the quenching by dithionite of the fluorescence of the acceptor dye. The results unraveled that plasma membrane-bound flavoproteins are largely enriched in interneuronal contact sites forming clusters of 0.5-1 microm diameter size, which appears largely regionalized in the neuron's cell body.

Related Organizations
Keywords

Neurons, Microscopy, Confocal, Flavoproteins, Cell Membrane, Cell Culture Techniques, Dithionite, Rats, Cerebellum, Fluorescence Resonance Energy Transfer, Animals, Biomarkers, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Average