Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Immun...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Immunology
Article . 2004 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
The Journal of Immunology
Article . 2004 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions

Lymphoma B Cells Evade Apoptosis through the TNF Family Members BAFF/BLyS and APRIL

Authors: Bing He; Erin Jou; Elaine J. Schattner; Daniel M. Knowles; Andrea Cerutti; Amy Chadburn;

Lymphoma B Cells Evade Apoptosis through the TNF Family Members BAFF/BLyS and APRIL

Abstract

Abstract The mechanisms underlying the autonomous accumulation of malignant B cells remain elusive. We show in this study that non-Hodgkin’s lymphoma (NHL) B cells express B cell-activating factor of the TNF family (BAFF) and a proliferation-inducing ligand (APRIL), two powerful B cell-activating molecules usually expressed by myeloid cells. In addition, NHL B cells express BAFF receptor, which binds BAFF, as well as transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI) and B cell maturation Ag (BCMA), which bind both BAFF and APRIL. Neutralization of endogenous BAFF and APRIL by soluble TACI and BCMA decoy receptors attenuates the survival of NHL B cells, decreases activation of the prosurvival transcription factor NF-κB, down-regulates the antiapoptotic proteins Bcl-2 and Bcl-xL, and up-regulates the proapoptotic protein Bax. Conversely, exposure of NHL B cells to recombinant or myeloid cell-derived BAFF and APRIL attenuates apoptosis, increases NF-κB activation, up-regulates Bcl-2 and Bcl-xL, and down-regulates Bax. In some NHLs, exogenous BAFF and APRIL up-regulate c-Myc, an inducer of cell proliferation; down-regulate p53, an inhibitor of cell proliferation; and increase Bcl-6, an inhibitor of B cell differentiation. By showing that nonmalignant B cells up-regulate BAFF and APRIL upon stimulation by T cell CD40 ligand, our findings indicate that NHL B cells deregulate an otherwise physiological autocrine survival pathway to evade apoptosis. Thus, neutralization of BAFF and APRIL by soluble TACI and BCMA decoy receptors could be useful to dampen the accumulation of malignant B cells in NHL patients.

Related Organizations
Keywords

Cell Survival, Lymphoma, Non-Hodgkin, CD40 Ligand, B-Lymphocyte Subsets, NF-kappa B, Membrane Proteins, Receptors, Antigen, B-Cell, Apoptosis, Ligands, Receptors, Tumor Necrosis Factor, Neoplasm Proteins, Autocrine Communication, Proto-Oncogene Proteins c-bcl-2, B-Cell Activating Factor, Paracrine Communication, Humans, Myeloid Cells, B-Cell Maturation Antigen, Cells, Cultured, B-Cell Activation Factor Receptor

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    274
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
274
Top 1%
Top 1%
Top 1%
bronze