Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2000 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Isolation, Structural Characterization, and Bioactivity of a Novel Neuromedin U Analog from the Defensive Skin Secretion of the Australasian Tree Frog, Litoria caerulea

Authors: A L, Salmon; A H, Johnsen; M, Bienert; G, McMurray; K A, Nandha; S R, Bloom; C, Shaw;

Isolation, Structural Characterization, and Bioactivity of a Novel Neuromedin U Analog from the Defensive Skin Secretion of the Australasian Tree Frog, Litoria caerulea

Abstract

We report the isolation of a novel bioactive peptide, neuromedin U-23 (NmU-23), from the defensive skin secretion of the Australasian tree frog, Litoria caerulea. The primary structure of the peptide was established by a combination of microsequencing, mass spectroscopy and site-directed antiserum immunoreactivity as SDEEVQVPGGVISNGYFLFRPRN-amide (M(r) 2580.6). A synthetic replicate of frog NmU-23 displaced monoradioiodinated rat NmU-23 from uterine membranes in a dose-dependent fashion indistinguishable from nonisotopically labeled rat NmU-23. In a rat uterine smooth muscle strip preparation, synthetic frog NmU-23 produced dose-dependent contractions identical to porcine NmU-25. However, in a preparation of human urinary bladder muscle strip, the synthetic frog peptide was more potent than porcine NmU-25 in eliciting contraction and produced desensitization of the preparation to the latter peptide. This report demonstrates that the defensive skin secretion of a frog contains a novel peptide exhibiting a high degree of primary structural similarity to the endogenous vertebrate peptide, NmU, and that this frog skin analog displays biological activity in mammalian tissues.

Related Organizations
Keywords

Sequence Homology, Amino Acid, Molecular Sequence Data, Neuropeptides, Muscle, Smooth, In Vitro Techniques, Bufonidae, Mass Spectrometry, Rats, Radioligand Assay, Chromatography, Gel, Animals, Humans, Female, Amino Acid Sequence, Rats, Wistar, Chromatography, High Pressure Liquid, Skin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Top 10%
Top 10%
gold