An inversion identified in acl1-1 mutant functions as an enhancer of the acl1-1 phenotype
doi: 10.1266/ggs.83.293
pmid: 18931455
An inversion identified in acl1-1 mutant functions as an enhancer of the acl1-1 phenotype
The Arabidopsis acaulis1-1 (acl1-1) mutant exhibits severe growth defects when grown at 22 degrees C. The leaves are tiny and curled and the inflorescence stems are short. We identified an inversion mutation in the original acl1-1 plants. The acl1-1 plants were crossed with Columbia wild-type, and the acl1-1 phenotype and the inversion were segregated in the F2 generation. Compared to the original acl1-1 plants with the inversion, the genuine acl1-1 plants without the inversion grew larger and their inflorescence stems grew longer at 22 degrees C. When the plants were grown at 24 degrees C, the differences in growth became more apparent. We investigated the expression of genes located in the inversion. Two genes that were located at each end of the inversion were disrupted, and full-length transcripts were not expressed. Expressions of some genes within and adjacent to the inversion were also altered. Our results indicate that the expression of multiple genes may be involved in the enhancement of the acl1-1 phenotype.
- University of Tokyo Japan
Phenotype, Base Sequence, Arabidopsis Proteins, Gene Expression Regulation, Plant, Chromosome Inversion, Molecular Sequence Data, Acyl Carrier Protein, Arabidopsis, Temperature, Plants, Genetically Modified
Phenotype, Base Sequence, Arabidopsis Proteins, Gene Expression Regulation, Plant, Chromosome Inversion, Molecular Sequence Data, Acyl Carrier Protein, Arabidopsis, Temperature, Plants, Genetically Modified
28 Research products, page 1 of 3
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
