Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cellular and Molecul...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cellular and Molecular Neurobiology
Article . 2010 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

NMDA Receptors are Expressed in Lymphocytes Activated Both In Vitro and In Vivo

Authors: Ivo Vanicky; Dasha Cizkova; Alexander A. Boldyrev; Anna P. Mashkina;

NMDA Receptors are Expressed in Lymphocytes Activated Both In Vitro and In Vivo

Abstract

There is increasing evidence showing that the interplay between neuronal and immune systems may be regulated by neuromediators. However, little is known about the involvement of glutamatergic system in such neuro-immune relations. In the present study, we have shown that some intact lymphocytes express N-methyl-D: -aspartate activated receptors (NMDA receptors), an important constituent of glutamatergic system. The activation of lymphocytes with phytohemagglutinin (PHA) induces a time-dependent increase in the amount of NMDA receptor presenting cells, and NMDA stimulates this process. Immune response of such lymphocytes is suppressed and the amount of cells producing interferon gamma (IFN-gamma) in vitro is decreased to the level corresponding to intact (non-activated) cells. Furthermore, lymphocytes in the region of inflammation, induced by spinal cord injury (SCI), are also NMDA-positive. We suggest that expression of NMDA receptors in lymphocytes is regulated by central nervous system, which controls the inflammation process.

Keywords

Inflammation, N-Methylaspartate, T-Lymphocytes, Lymphocyte Activation, Receptors, N-Methyl-D-Aspartate, Rats, Interferon-gamma, Protein Subunits, Spinal Cord, Cell Movement, Animals, Humans, Phytohemagglutinins, Rats, Wistar

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 10%