Tumor-Associated Calcium Signal Transducer 2 Is Required for the Proper Subcellular Localization of Claudin 1 and 7
Tumor-Associated Calcium Signal Transducer 2 Is Required for the Proper Subcellular Localization of Claudin 1 and 7
Gelatinous drop-like dystrophy (GDLD) is a rare autosomal recessive form of corneal dystrophy characterized by subepithelial amyloid depositions on the cornea. Previous clinical and laboratory observations have strongly suggested that epithelial barrier function is significantly decreased in GDLD. Despite the decade-old identification of the tumor-associated calcium signal transducer 2 (TACSTD2) gene as a causative gene for GDLD, the mechanism by which the loss of function of this causative gene leads to the pathological consequence of this disease remains unknown. In this study, we investigated the functional relationship between the TACSTD2 gene and epithelial barrier function. Through the use of immunoprecipitation and a proximity ligation assay, we obtained evidence that the TACSTD2 protein directly binds to claudin 1 and 7 proteins. In addition, the loss of function of the TACSTD2 gene leads to decreased expression and change in the subcellular localization of tight junction-related proteins, including claudin 1, 4, 7, and ZO1 and occludin, both in diseased cornea and cultured corneal epithelial cells. These results indicate that loss of function of the TACSTD2 gene impairs epithelial barrier function through decreased expression and altered subcellular localization of tight junction-related proteins in GDLD corneas.
- Osaka University Japan
- Juntendo University Japan
- Kyoto Prefectural University of Medicine Japan
Corneal Dystrophies, Hereditary, Reverse Transcriptase Polymerase Chain Reaction, Blotting, Western, Epithelium, Corneal, Membrane Proteins, Antigens, Neoplasm, Claudin-1, Claudins, Humans, Immunoprecipitation, Microscopy, Immunoelectron, Cell Adhesion Molecules, Microdissection, Cells, Cultured
Corneal Dystrophies, Hereditary, Reverse Transcriptase Polymerase Chain Reaction, Blotting, Western, Epithelium, Corneal, Membrane Proteins, Antigens, Neoplasm, Claudin-1, Claudins, Humans, Immunoprecipitation, Microscopy, Immunoelectron, Cell Adhesion Molecules, Microdissection, Cells, Cultured
8 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).82 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
