Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ AJP Heart and Circul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AJP Heart and Circulatory Physiology
Article . 2016 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Heterozygous deletion of sarcolipin maintains normal cardiac function

Authors: Daisuke, Shimura; Yoichiro, Kusakari; Tetsuo, Sasano; Yasuhiro, Nakashima; Gaku, Nakai; Qibin, Jiao; Meihua, Jin; +5 Authors

Heterozygous deletion of sarcolipin maintains normal cardiac function

Abstract

Sarcolipin (SLN) is a small proteolipid and a regulator of sarco(endo)plasmic reticulum Ca2+-ATPase. In heart tissue, SLN is exclusively expressed in the atrium. Previously, we inserted Cre recombinase into the endogenous SLN locus by homologous recombination and succeeded in generating SLN-Cre knockin (SlnCre/+) mice. This SlnCre/+ mouse can be used to generate an atrium-specific gene-targeting mutant, and it is based on the Cre-loxP system. In the present study, we used adult SlnCre/+ mice atria and analyzed the effects of heterozygous SLN deletion by Cre knockin before use as the gene targeting mouse. Both SLN mRNA and protein levels were decreased in SlnCre/+ mouse atria, but there were no morphological, physiological, or molecular biological abnormalities. The properties of contractility and Ca2+ handling were similar to wild-type (WT) mice, and expression levels of several stress markers and sarcoplasmic reticulum-related protein levels were not different between SlnCre/+ and WT mice. Moreover, there was no significant difference in sarco(endo)plasmic reticulum Ca2+-ATPase activity between the two groups. We showed that SlnCre/+ mice were not significantly different from WT mice in all aspects that were examined. The present study provides basic characteristics of SlnCre/+ mice and possibly information on the usefulness of SlnCre/+ mice as an atrium-specific gene-targeting model.

Keywords

Male, Mice, Knockout, Heterozygote, Genotype, Proteolipids, Isoproterenol, Muscle Proteins, Adrenergic beta-Agonists, Fibrosis, Myocardial Contraction, Ventricular Function, Left, Sarcoplasmic Reticulum Calcium-Transporting ATPases, Mice, Inbred C57BL, Sarcoplasmic Reticulum, Phenotype, Animals, Female, Myocytes, Cardiac, Calcium Signaling, Gene Deletion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Average
Top 10%
bronze