Preserved function of the plasma membrane calcium pump of red blood cells from diabetic subjects with high levels of glycated haemoglobin
pmid: 19070897
Preserved function of the plasma membrane calcium pump of red blood cells from diabetic subjects with high levels of glycated haemoglobin
The activity of the plasma membrane Ca(2+)-pump decreases steeply throughout the 120 days lifespan of normal human red blood cells. Experiments with isolated membrane preparations showed that glycation of a lysine residue near the catalytic site of the pump ATPase had a powerful inhibitory effect. This prompted the question of whether glycation is the mechanism of age-related decline in pump activity in vivo. It is important to investigate this mechanism because the Ca(2+) pump is a major regulator of Ca(2+) homeostasis in all cells. Its impaired activity in diabetic patients, continuously exposed to high glycation rates, may thus contribute to varied tissue pathology in this disease. We measured Ca(2+)-pump activity as a function of red cell age in red cells from diabetics continuously exposed to high glucose concentrations, as documented by their high mean levels of glycated haemoglobin. The distribution of Ca(2+)-pump activities was indistinguishable from that in non-diabetics, and the pattern of activity decline with cell age in the diabetics' red cells was identical to that observed in red cells from non-diabetics. These results indicate that in intact cells the Ca(2+) pump is protected from glycation-induced inactivation.
- University of Cambridge United Kingdom
- Yeshiva University United States
- Albert Einstein College of Medicine United States
Glycated Hemoglobin, Plasma Membrane Calcium-Transporting ATPases, Erythrocytes, Time Factors, Erythrocyte Membrane, Diabetes Mellitus, Humans
Glycated Hemoglobin, Plasma Membrane Calcium-Transporting ATPases, Erythrocytes, Time Factors, Erythrocyte Membrane, Diabetes Mellitus, Humans
6 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).10 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
