Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Endocrine Regulation...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Endocrine Regulations
Article . 2022 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Endocrine Regulations
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Endocrine Regulations
Article . 2022
Data sources: DOAJ
versions View all 3 versions

The impact of glutamine deprivation on the expression of MEIS3, SPAG4, LHX1, LHX2, and LHX6 genes in ERN1 knockdown U87 glioma cells

Authors: Krasnytska Dariia A.; Khita Olena O.; Tsymbal Dariia O.; Luzina Olha Y.; Cherednychenko Anastasiia A.; Kozynkevich Halyna E.; Bezrodny Borys H.; +1 Authors

The impact of glutamine deprivation on the expression of MEIS3, SPAG4, LHX1, LHX2, and LHX6 genes in ERN1 knockdown U87 glioma cells

Abstract

Abstract Objective. The aim of the current study was to investigate the expression of genes encoded homeobox proteins such as MEIS3 (Meis homeobox 3), SPAG4 (sperm associated antigen 4), LHX1 (LIM homeobox 1), LHX2, and LHX6 in U87 glioma cells in response to glutamine deprivation in control glioma cells and cells with knockdown of ERN1 (endoplasmic reticulum to nucleus signaling 1), the major pathway of the endoplasmic reticulum stress signaling, for evaluation of a possible dependence on the expression of these important regulatory genes from glutamine supply and ERN1 signaling. Methods. The expression level of MEIS3, SPAG4, LHX, LHX2, and LHX6 genes was studied by real-time quantitative polymerase chain reaction in control U87 glioma cells (transfected by vector) and cells with ERN1 knockdown after exposure to glutamine deprivation. Results. It was shown that the expression level of MEIS3 and LHX1 genes was up-regulated in control glioma cells treated by glutamine deprivation. At the same time, the expression level of three other genes (LHX2, LHX6, and SPAG4) was down-regulated. Furthermore, ERN1 knockdown significantly modified the effect of glutamine deprivation on LHX1 gene expression in glioma cells, but did not change significantly the sensitivity of all other genes expression to this experimental condition. Conclusion. The results of this investigation demonstrate that the exposure of U87 glioma cells under glutamine deprivation significantly affected the expression of all genes studied encoding the homeobox proteins and that this effect of glutamine deprivation was independent of the endoplasmic reticulum stress signaling mediated by ERN1, except LHX1 gene.

Keywords

u87 glioma cells, Glutamine, LIM-Homeodomain Proteins, ern1 knockdown, Nerve Tissue Proteins, homeobox genes, Glioma, Protein Serine-Threonine Kinases, RC648-665, Diseases of the endocrine glands. Clinical endocrinology, Gene Expression Regulation, Neoplastic, Glucose, Cell Line, Tumor, Gene Knockdown Techniques, Endoribonucleases, Humans, mrna expression, glutamine deprivation, Carrier Proteins, Cell Proliferation, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
gold