Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ YUHSpace (Yonsei Uni...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Circulation Journal
Article . 2015 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Deletion of the Serotonin Receptor Type 3A in Mice Leads to Sudden Cardiac Death During Pregnancy

Authors: Hyewon, Park; Chang-Myung, Oh; Junbeom, Park; Hyelim, Park; Shanyu, Cui; Hyung Suk, Kim; Jun, Namkung; +5 Authors

Deletion of the Serotonin Receptor Type 3A in Mice Leads to Sudden Cardiac Death During Pregnancy

Abstract

The serotonin receptor type 3 (Htr3) blocker is associated with QT prolongation and torsades de pointes. However, little is known about effects of Htr3 on the heart arrhythmia.An electrophysiological study Involving knock-out (KO) female mice lacking functional Htr3a (Htr3a(-/-)) and their wild-type littermates during non-pregancy (NP) and late pregnancy (LP) was performed. Htr3a mRNA was present in the wild-type, but not in the Htr3a(-/-)mouse hearts. Serotonin and tryptophan hydroxylase 1 (Tph1), a rate-limiting enzyme of serotonin synthesis in hearts, is increased during pregnancy. The heart weight and size were increased in the pregnant mice regardless of a mutation. The QTc intervals were prolonged after pregnancy in both the wild (NP: 171.2±16.8 vs. LP: 247.7±14.3 ms; P<0.001) and Htr3a(-/-)mice (NP: 187.9±18.7 vs. LP: 275.6±11.0 ms, P<0.001). Compared with wild-type LP mice, Htr3a(-/-)LP mice had increased spontaneous ventricle tarchycardia (VT; 56% vs. 0%, P=0.002), VT inducibility (66% vs. 25%, P=0.002) and mortality (56% vs. 0%, P=0.002). Pharmacologic administration of serotonin and Htr3 agonists (m-CPBG) decreased the QT interval in wild mice, but not in Htr3a(-/-)mice.Htr3a is present in mouse hearts. Serotonin and Tph1 were increased during pregnancy. The deletion of Htr3a was related to fatal arrhythmias and sudden cardiac death during pregnancy, and its activation reversed the QT prolongation.

Country
Korea (Republic of)
Keywords

Myocardium/pathology, 5-HT3/deficiency*, Serotonin, Knockout, Pregnancy Complications, Cardiovascular, 610, Cardiac/genetics, QT prolongation, Arrhythmias, Tryptophan Hydroxylase, Mice, Cardiovascular/genetics, Pregnancy, Receptors, Fatal arrhythmia, 616, Animals, Cardiovascular/metabolism*, Tryptophan Hydroxylase/metabolism*, Serotonin receptor type 3, Mice, Knockout, Myocardium, Arrhythmias, Cardiac, Sudden, Serotonin/biosynthesis*, Cardiac*, Death, Pregnancy Complications, Death, Sudden, Cardiac, Serotonin/genetics, Cardiac/metabolism, Myocardium/metabolism*, Female, Tryptophan Hydroxylase/genetics, Receptors, Serotonin, 5-HT3

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
Green
gold