HIF-P4H-2 deficiency protects against skeletal muscle ischemia-reperfusion injury
pmid: 26452676
HIF-P4H-2 deficiency protects against skeletal muscle ischemia-reperfusion injury
We show here that mice hypomorphic for hypoxia-inducible factor prolyl 4-hydroxylase-2 (HIF-P4H-2) (Hif-p4h-2 (gt/gt)), the main regulator of the stability of the HIFα subunits, have normoxic stabilization of HIF-1α and HIF-2α in their skeletal muscles. The size of the capillaries, but not their number, was increased in the skeletal muscles of the Hif-p4h-2 (gt/gt) mice, whereas the amount of glycogen was reduced. The expression levels of genes for glycolytic enzymes, glycogen branching enzyme 1 and monocarboxylate transporter 4, were increased in the Hif-p4h-2 (gt/gt) skeletal muscles, whereas no significant increases were detected in the levels of any vasculature-influencing factor studied. Serum lactate levels of the Hif-p4h-2 (gt/gt) mice recovered faster than those of the wild type following exercise. The Hif-p4h-2 (gt/gt) mice had elevated hepatic phosphoenolpyruvate carboxykinase activity, which may have contributed to the faster clearance of lactate. The Hif-p4h-2 (gt/gt) mice had smaller infarct size following limb ischemia-reperfusion injury. The increased capillary size correlated with the reduced infarct size. Following ischemia-reperfusion, glycogen content and ATP/ADP and CrP/Cr levels of the skeletal muscle of the Hif-p4h-2 (gt/gt) mice were higher than in the wild type. The higher glycogen content correlated with increased expression of phosphofructokinase messenger RNA (mRNA) and the increased ATP/ADP and CrP/Cr levels with reduced apoptosis, suggesting that HIF-P4H-2 deficiency supported energy metabolism during ischemia-reperfusion and protection against injury. Key messages: HIF-P4H-2 deficiency protects skeletal muscle from ischemia-reperfusion injury. The mechanisms involved are mediated via normoxic HIF-1α and HIF-2α stabilization. HIF-P4H-2 deficiency increases capillary size but not number. HIF-P4H-2 deficiency maintains energy metabolism during ischemia-reperfusion.
- University of Oulu Finland
- Oulu University Hospital Finland
Protective Factors, Hypoxia-Inducible Factor 1, alpha Subunit, Hypoxia-Inducible Factor-Proline Dioxygenases, Mice, Inbred C57BL, Mice, Gene Expression Regulation, Reperfusion Injury, Basic Helix-Loop-Helix Transcription Factors, Animals, Female, Muscle, Skeletal, Gene Deletion, Glycogen
Protective Factors, Hypoxia-Inducible Factor 1, alpha Subunit, Hypoxia-Inducible Factor-Proline Dioxygenases, Mice, Inbred C57BL, Mice, Gene Expression Regulation, Reperfusion Injury, Basic Helix-Loop-Helix Transcription Factors, Animals, Female, Muscle, Skeletal, Gene Deletion, Glycogen
9 Research products, page 1 of 1
- 2012IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
- 2022IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).13 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
