Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Inverse Problems & I...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Inverse Problems & Imaging
Article
License: CC BY
Data sources: UnpayWall
Inverse Problems & Imaging
Article . 2017 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions

Convergence and stability of iteratively reweighted least squares for low-rank matrix recovery

Authors: Song Li; Yun Cai;

Convergence and stability of iteratively reweighted least squares for low-rank matrix recovery

Abstract

In this paper, we study the theoretical properties of iteratively reweighted least squares algorithm for recovering a matrix (IRLS-M for short) from noisy linear measurements. The IRLS-M was proposed by Fornasier et al. (2011) [ 17 ] for solving nuclear norm minimization and by Mohan et al. (2012) [ 31 ] for solving Schatten- \begin{document}$p$\end{document} (quasi) norm minimization ( \begin{document}$0 ) in noiseless case, based on the iteratively reweighted least squares algorithm for sparse signal recovery (IRLS for short) (Daubechies et al., 2010) [ 15 ], and numerical experiments have been given to show its efficiency (Fornasier et al. and Mohan et al.) [ 17 ], [ 31 ]. In this paper, we focus on providing convergence and stability analysis of iteratively reweighted least squares algorithm for low-rank matrix recovery in the presence of noise. The convergence of IRLS-M is proved strictly for all \begin{document}$0 . Furthermore, when the measurement map \begin{document}$\mathcal{A}$\end{document} satisfies the matrix restricted isometry property (M-RIP for short), we show that the IRLS-M is stable for \begin{document}$0 . Specially, when \begin{document}$p=1$\end{document} , we prove that the M-RIP constant \begin{document}$δ_{2r} is sufficient for IRLS-M to recover an unknown (approximately) low rank matrix with an error that is proportional to the noise level. The simplicity of IRLS-M, along with the theoretical guarantees provided in this paper, make a compelling case for its adoption as a standard tool for low rank matrix recovery.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
hybrid
Related to Research communities