Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Circulation Heart Fa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Circulation Heart Failure
Article . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Toll-Like Receptor-Mediated Inflammatory Signaling Reprograms Cardiac Energy Metabolism by Repressing Peroxisome Proliferator-Activated Receptor γ Coactivator-1 Signaling

Authors: Joel, Schilling; Ling, Lai; Nandakumar, Sambandam; Courtney E, Dey; Teresa C, Leone; Daniel P, Kelly;

Toll-Like Receptor-Mediated Inflammatory Signaling Reprograms Cardiac Energy Metabolism by Repressing Peroxisome Proliferator-Activated Receptor γ Coactivator-1 Signaling

Abstract

Background— Currently, there are no specific therapies available to treat cardiac dysfunction caused by sepsis and other chronic inflammatory conditions. Activation of toll-like receptor 4 (TLR4) by lipopolysaccharide (LPS) is an early event in Gram-negative bacterial sepsis, triggering a robust inflammatory response and changes in metabolism. Peroxisome proliferator–activated receptor-γ coactivator-1 (PGC-1) α and β serve as critical physiological regulators of energy metabolic gene expression in heart. Methods and Results— Injection of mice with LPS triggered a myocardial fuel switch similar to that of the failing heart: reduced mitochondrial substrate flux and myocyte lipid accumulation. The LPS-induced metabolic changes were associated with diminished ventricular function and suppression of the genes encoding PGC-1α and β, known transcriptional regulators of mitochondrial function. This cascade of events required TLR4 and nuclear factor-κB activation. Restoration of PGC-1β expression in cardiac myocytes in culture and in vivo in mice reversed the gene regulatory, metabolic, and functional derangements triggered by LPS. Interestingly, the effects of PGC-1β overexpression were independent of the upstream inflammatory response, highlighting the potential utility of modulating downstream metabolic derangements in cardiac myocytes as a novel strategy to prevent or treat sepsis-induced heart failure. Conclusions— LPS triggers cardiac energy metabolic reprogramming through suppression of PGC-1 coactivators in the cardiac myocyte. Reactivation of PGC-1β expression can reverse the metabolic and functional derangements caused by LPS-TLR4 activation, identifying the PGC-1 axis as a candidate therapeutic target for sepsis-induced heart failure.

Keywords

Heart Failure, Lipopolysaccharides, Male, Mice, Knockout, Myocardium, Fatty Acids, NF-kappa B, Lipid Metabolism, Mice, Inbred C57BL, Toll-Like Receptor 4, Disease Models, Animal, Mice, Animals, Myocytes, Cardiac, Energy Metabolism, Reactive Oxygen Species, Cells, Cultured, Signal Transduction, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    109
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
109
Top 10%
Top 10%
Top 1%
bronze