Myzus persicae (green peach aphid) feeding on Arabidopsis induces the formation of a deterrent indole glucosinolate
pmid: 17257166
Myzus persicae (green peach aphid) feeding on Arabidopsis induces the formation of a deterrent indole glucosinolate
SummaryCruciferous plants produce a wide variety of glucosinolates as a protection against herbivores and pathogens. However, very little is known about the importance of individual glucosinolates in plant defense and the regulation of their production in response to herbivory. When Myzus persicae (green peach aphid) feeds on Arabidopsis aliphatic glucosinolates pass through the aphid gut intact, but indole glucosinolates are mostly degraded. Although aphid feeding causes an overall decrease in Arabidopsis glucosinolate content, the production of 4‐methoxyindol‐3‐ylmethylglucosinolate is induced. This altered glucosinolate profile is not a systemic plant response, but is limited to the area in which aphids are feeding. Aphid feeding on detached leaves causes a similar change in the glucosinolate profile, demonstrating that glucosinolate transport is not required for the observed changes. Salicylate‐mediated signaling has been implicated in other plant responses to aphid feeding. However, analysis of eds5, pad4, npr1 and NahG transgenic Arabidopsis, which are compromised in this pathway, demonstrated that aphid‐induced changes in the indole glucosinolate profile were unaffected. The addition of purified indol‐3‐ylmethylglucosinolate to the petioles of cyp79B2 cyp79B3 mutant leaves, which do not produce indole glucosinolates, showed that this glucosinolate serves as a precursor for the aphid‐induced synthesis of 4‐methoxyindol‐3‐ylmethylglucosinolate. In artificial diets, 4‐methoxyindol‐3‐ylmethylglucosinolate is a significantly greater aphid deterrent in the absence of myrosinase than its metabolic precursor indol‐3‐ylmethylglucosinolate. Together, these results demonstrate that, in response to aphid feeding, Arabidopsis plants convert one indole glucosinolate to another that provides a greater defensive benefit.
- Boyce Thompson Institute United States
- Boyce Thompson Institute for Plant Research United States
Defensins, Indoles, Aphids, Glucosinolates, Arabidopsis, Animals
Defensins, Indoles, Aphids, Glucosinolates, Arabidopsis, Animals
10 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).292 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
