Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochemical Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical Journal
Article . 2013 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions

Structural insights into the small G-protein Arl13B and implications for Joubert syndrome

Authors: Miertzschke, Mandy; Koerner, Carolin; Spoerner, Michael; Wittinghofer, Alfred;

Structural insights into the small G-protein Arl13B and implications for Joubert syndrome

Abstract

Ciliopathies are human diseases arising from defects in primary or motile cilia. The small G-protein Arl13B (ADP-ribosylation factor-like 13B) localizes to microtubule doublets of the ciliary axoneme and is mutated in Joubert syndrome. Its GDP/GTP mechanistic cycle and the effect of its mutations in patients with Joubert syndrome remain elusive. In the present study we applied high resolution structural and biochemical approaches to study Arl13B. The crystal structure of Chlamydomonas rheinhardtii Arl13B, comprising the G-domain and part of its unique C-terminus, revealed an incomplete active site, and together with biochemical data the present study accounts for the absence of intrinsic GTP hydrolysis by this protein. The structure shows that the residues representing patient mutations R79Q and R200C are involved in stabilizing important intramolecular interactions. Our studies suggest that Arg79 is crucial for the GDP/GTP conformational change by stabilizing the large two-residue register shift typical for Arf (ADP-ribosylation factor) and Arl subfamily proteins. A corresponding mutation in Arl3 induces considerable defects in effector and GAP (GTPase-activating protein) binding, suggesting a loss of Arl13B function in patients with Joubert syndrome.

Keywords

info:eu-repo/classification/ddc/540, ADP-Ribosylation Factors, Molecular Sequence Data, Kidney Diseases, Cystic, Crystallography, X-Ray, Protein Structure, Secondary, Retina, Cerebellar Diseases, Cerebellum, Mutation, Humans, Abnormalities, Multiple, Amino Acid Sequence, Eye Abnormalities, Monomeric GTP-Binding Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Top 10%
Average
Top 10%
Green
bronze