Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cell Scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Cell Science
Article . 2004 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Nvj1p is the outer-nuclear-membrane receptor for oxysterol-binding protein homolog Osh1p inSaccharomyces cerevisiae

Authors: David S. Goldfarb; Erik Leeming Kvam;

Nvj1p is the outer-nuclear-membrane receptor for oxysterol-binding protein homolog Osh1p inSaccharomyces cerevisiae

Abstract

OSH1 belongs to a seven-member gene family in yeast that is related to mammalian oxysterol-binding protein (OSBP). Here, we investigate the targeting of Osh1p to nucleus-vacuole (NV) junctions in Saccharomyces cerevisiae. NV junctions are interorganelle interfaces mediated by Nvj1p in the nuclear envelope and Vac8p on the vacuole membrane. Together, Nvj1p and Vac8p form Velcro-like patches through which teardrop-like portions of the nucleus are pinched off into the vacuolar lumen and degraded by a process termed piecemeal microautophagy of the nucleus (PMN). Osh1p is targeted to NV junctions proportional to NVJ1 expression through a physical association with Nvj1p. NV junctions per se are not required for this targeting because Osh1p colocalizes with Nvj1p in the absence of Vac8p. NV-junction-associated Osh1p is also a substrate for PMN degradation. Although OSH1 is not required for NV-junction formation or PMN, PMN is defective in cells lacking the yeast OSBP family (Osh1p to Osh7p). By contrast, the vesicular targeting of aminopeptidase I to the vacuole by macroautophagy is not dependent on the Osh protein family. We conclude the formation of nuclear PMN vesicles requires the overlapping activities of Osh1p and other Osh family members.

Related Organizations
Keywords

Cell Nucleus, Microscopy, Confocal, Saccharomyces cerevisiae Proteins, Time Factors, Genotype, Lipoproteins, Green Fluorescent Proteins, Immunoblotting, Golgi Apparatus, Membrane Proteins, Receptors, Cytoplasmic and Nuclear, Saccharomyces cerevisiae, Aminopeptidases, Immunohistochemistry, Microscopy, Electron, Microscopy, Fluorescence, Autophagy, Carrier Proteins, Microscopy, Immunoelectron, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    115
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
115
Top 10%
Top 10%
Top 10%
bronze