Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nucleic Acids Resear...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nucleic Acids Research
Article . 2009 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nucleic Acids Research
Article
License: CC BY NC
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2009
License: CC BY NC
Data sources: PubMed Central
versions View all 3 versions

Human DNA polymerase possesses 5'-dRP lyase activity and functions in single-nucleotide base excision repair in vitro

Authors: Prasad, Rajendra; Longley, Matthew J.; Sharief, Farida S.; Hou, Esther W.; Copeland, William C.; Wilson, Samuel H.;

Human DNA polymerase possesses 5'-dRP lyase activity and functions in single-nucleotide base excision repair in vitro

Abstract

DNA polymerase theta (Pol theta) is a low-fidelity DNA polymerase that belongs to the family A polymerases and has been proposed to play a role in somatic hypermutation. Pol theta has the ability to conduct translesion DNA synthesis opposite an AP site or thymine glycol, and it was recently proposed to be involved in base excision repair (BER) of DNA damage. Here, we show that Pol theta has intrinsic 5'-deoxyribose phosphate (5'-dRP) lyase activity that is involved in single-nucleotide base excision DNA repair (SN-BER). Full-length human Pol theta is a approximately 300-kDa polypeptide, but we show here that the 98-kDa C-terminal region of Pol theta possesses both DNA polymerase activity and dRP lyase activity and is sufficient to carry out base excision repair in vitro. The 5'-dRP lyase activity is independent of the polymerase activity, in that a polymerase inactive mutant retained full 5'-dRP lyase activity. Domain mapping of the 98-kDa enzyme by limited proteolysis and NaBH(4) cross-linking with a BER intermediate revealed that the dRP lyase active site resides in a 24-kDa domain of Pol theta. These results are consistent with a role of Pol theta in BER.

Keywords

Kinetics, DNA Repair, Nucleic Acid Enzymes, Catalytic Domain, Humans, DNA-Directed DNA Polymerase, Phosphorus-Oxygen Lyases, Peptides, DNA Polymerase theta, Protein Structure, Tertiary

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    91
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
91
Top 10%
Top 10%
Top 10%
Green
gold