Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochimica et Biophy...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochimica et Biophysica Acta (BBA) - Biomembranes
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochimica et Biophysica Acta (BBA) - Biomembranes
Article . 2011
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochimica et Biophysica Acta (BBA) - Biomembranes
Article . 2011 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Structure and metal ion binding of the first transmembrane domain of DMT1

Authors: Wang, Dan; Song, Yuande; Li, Jiantao; Wang, Chunyu; Li, Fei;

Structure and metal ion binding of the first transmembrane domain of DMT1

Abstract

DMT1 is an integral membrane protein with 12 putative transmembrane domains. As a divalent metal ion transporter, it plays an important role in metal ion homeostasis from bacteria to human. Loss-function mutations at the conserved motif DPGN located within the first transmembrane domain (TMD1) of DMT1 indicate the significance of TMD1 in the biological function of the protein. In the present work, we study the structure, topology and metal ion binding of DMT1-TMD1 peptide by nuclear magnetic resonance using sodium dodecyl sulfate and dodecylphosphocholine micelles as membrane mimics. We find that the peptide forms an α-helix-extended segment-α-helix configuration in which the motif DPGN locates at the central flexible region. The N-terminal part of the peptide is deeply embedded in micelles, while the motif section and the C-terminal part are close to the surface of micelles. The peptide can bind to Mn2+ and Co2+ ions by the side chains of the negatively charged residues in the motif section and the C-terminal part of TMD1. The crucial role of the central flexible region and the C-terminal part of TMD1 in metal ion capture is confirmed by the binding of the N-terminal part truncated TMD1 to metal ions.

Related Organizations
Keywords

Models, Molecular, Magnetic Resonance Spectroscopy, Phosphorylcholine, Amino Acid Motifs, Lipid Bilayers, Molecular Sequence Data, Biophysics, Metal ion binding, Topology, Biochemistry, Protein Structure, Secondary, Animals, Humans, Amino Acid Sequence, Cation Transport Proteins, DMT1-TMD1, Manganese, Binding Sites, Ion Transport, Structure, Sodium Dodecyl Sulfate, Cell Biology, Cobalt, Hydrogen-Ion Concentration, NMR, Protein Structure, Tertiary, Metals, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Average
Top 10%
hybrid