Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ BMC Bioinformaticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Bioinformatics
Article . 2005 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Bioinformatics
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2005
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Bioinformatics
Article . 2005
Data sources: DOAJ
DBLP
Article
Data sources: DBLP
versions View all 6 versions

Refined repetitive sequence searches utilizing a fast hash function and cross species information retrievals

Authors: Reneker Jeff; Shyu Chi-Ren;

Refined repetitive sequence searches utilizing a fast hash function and cross species information retrievals

Abstract

Abstract Background Searching for small tandem/disperse repetitive DNA sequences streamlines many biomedical research processes. For instance, whole genomic array analysis in yeast has revealed 22 PHO-regulated genes. The promoter regions of all but one of them contain at least one of the two core Pho4p binding sites, CACGTG and CACGTT. In humans, microsatellites play a role in a number of rare neurodegenerative diseases such as spinocerebellar ataxia type 1 (SCA1). SCA1 is a hereditary neurodegenerative disease caused by an expanded CAG repeat in the coding sequence of the gene. In bacterial pathogens, microsatellites are proposed to regulate expression of some virulence factors. For example, bacteria commonly generate intra-strain diversity through phase variation which is strongly associated with virulence determinants. A recent analysis of the complete sequences of the Helicobacter pylori strains 26695 and J99 has identified 46 putative phase-variable genes among the two genomes through their association with homopolymeric tracts and dinucleotide repeats. Life scientists are increasingly interested in studying the function of small sequences of DNA. However, current search algorithms often generate thousands of matches – most of which are irrelevant to the researcher. Results We present our hash function as well as our search algorithm to locate small sequences of DNA within multiple genomes. Our system applies information retrieval algorithms to discover knowledge of cross-species conservation of repeat sequences. We discuss our incorporation of the Gene Ontology (GO) database into these algorithms. We conduct an exhaustive time analysis of our system for various repetitive sequence lengths. For instance, a search for eight bases of sequence within 3.224 GBases on 49 different chromosomes takes 1.147 seconds on average. To illustrate the relevance of the search results, we conduct a search with and without added annotation terms for the yeast Pho4p binding sites, CACGTG and CACGTT. Also, a cross-species search is presented to illustrate how potential hidden correlations in genomic data can be quickly discerned. The findings in one species are used as a catalyst to discover something new in another species. These experiments also demonstrate that our system performs well while searching multiple genomes – without the main memory constraints present in other systems. Conclusion We present a time-efficient algorithm to locate small segments of DNA and concurrently to search the annotation data accompanying the sequence. Genome-wide searches for short sequences often return hundreds of hits. Our experiments show that subsequently searching the annotation data can refine and focus the results for the user. Our algorithms are also space-efficient in terms of main memory requirements. Source code is available upon request.

Keywords

Databases, Factual, QH301-705.5, Computer applications to medicine. Medical informatics, R858-859.7, Information Storage and Retrieval, Databases, Genetic, Animals, Humans, Biology (General), Promoter Regions, Genetic, Oligonucleotide Array Sequence Analysis, Repetitive Sequences, Nucleic Acid, Genome, Base Sequence, Helicobacter pylori, Gene Expression Profiling, Computational Biology, Sequence Analysis, DNA, Haemophilus influenzae, Database Management Systems, Programming Languages, Sequence Alignment, Algorithms, Software, Research Article

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Top 10%
Average
Green
gold