Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Pharmaceutics
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Interaction of folate-conjugated human serum albumin (HSA) nanoparticles with tumour cells

Authors: Martin Michaelis; Thomas Knobloch; Florian Rothweiler; Jörg Kreuter; Jindrich Cinatl; Patchima Sithisarn; Karsten Ulbrich;

Interaction of folate-conjugated human serum albumin (HSA) nanoparticles with tumour cells

Abstract

Folic acid has been previously demonstrated to mediate intracellular nanoparticle uptake. Here, we investigated cellular uptake of folic acid-conjugated human serum albumin nanoparticles (HSA NPs). HSA NPs were prepared by desolvation and stabilised by chemical cross-linking with glutaraldehyde. Folic acid was covalently coupled to amino groups on the surface of HSA NPs by carbodiimide reaction. Preparation resulted in spherical HSA NPs with diameters of 239 ± 26 nm. As shown by size exclusion chromatography, 7.40 ± 0.90 μg folate was bound per mg HSA NPs. Cellular NP binding and uptake were studied in primary normal human foreskin fibroblasts (HFFs), the human neuroblastoma cell line UKF-NB-3, and the rat glioblastoma cell line 101/8 by fluorescence spectrophotometry, flow cytometry, and confocal laser scanning microscopy. Covalent conjugation of folic acid to HSA NPs increased NP uptake into cancer cells but not into HFFs. Free folic acid interfered with cancer cell uptake of folic acid-conjugated HSA NPs but not with uptake of folic acid-conjugated HSA NPs into HFFs. These data suggest that covalent linkage of folic acid can specifically increase cancer cell HSA NP uptake.

Related Organizations
Keywords

Drug Carriers, Microscopy, Confocal, Cell Survival, Surface Properties, Antineoplastic Agents, Fibroblasts, Flow Cytometry, Rats, Folic Acid, Spectrometry, Fluorescence, Drug Stability, Cell Line, Tumor, Chromatography, Gel, Microscopy, Electron, Scanning, Animals, Humans, Nanoparticles, Particle Size, Serum Albumin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    102
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
102
Top 10%
Top 10%
Top 1%