Widespread reorganization of metabolic enzymes into reversible assemblies upon nutrient starvation
Widespread reorganization of metabolic enzymes into reversible assemblies upon nutrient starvation
Proteins are likely to organize into complexes that assemble and disassemble depending on cellular needs. When ≈800 yeast strains expressing GFP-tagged proteins were grown to stationary phase, a surprising number of proteins involved in intermediary metabolism and stress response were observed to form punctate cytoplasmic foci. The formation of these discrete physical structures was confirmed by immunofluorescence and mass spectrometry of untagged proteins. The purine biosynthetic enzyme Ade4-GFP formed foci in the absence of adenine, and cycling between punctate and diffuse phenotypes could be controlled by adenine subtraction and addition. Similarly, glutamine synthetase (Gln1-GFP) foci cycled reversibly in the absence and presence of glucose. The structures were neither targeted for vacuolar or autophagosome degradation nor colocalized with P bodies or major organelles. Thus, upon nutrient depletion we observe widespread protein assemblies displaying nutrient-specific formation and dissolution.
- Center for Systems Biology United States
- The University of Texas at Austin United States
- Yeshiva University United States
- Institute for Molecular and Cellular Biology France
- Harvard University United States
Cytoplasm, Multienzyme Complexes, Green Fluorescent Proteins, Vacuoles, Fluorescent Antibody Technique, Saccharomyces cerevisiae, Mass Spectrometry
Cytoplasm, Multienzyme Complexes, Green Fluorescent Proteins, Vacuoles, Fluorescent Antibody Technique, Saccharomyces cerevisiae, Mass Spectrometry
34 Research products, page 1 of 4
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).349 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
