Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PLoS ONEarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2013 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2014
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2013
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2013
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hal
Article . 2013
Data sources: Hal
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL Descartes
Article . 2013
Data sources: HAL Descartes
versions View all 7 versions

Regulatory CD4+Foxp3+ T Cells Control the Severity of Anaphylaxis

Authors: Kanjarawi, R.; M., Dy; Bardel, E.; Sparwasser, T.; Dubois, B.; Mecheri, S.; Kaiserlian, D.;

Regulatory CD4+Foxp3+ T Cells Control the Severity of Anaphylaxis

Abstract

Anaphylaxis is a life-threatening outcome of immediate-type hypersensitivity to allergen, consecutive to mast cell degranulation by allergen-specific IgE. Regulatory T cells (Treg) can control allergic sensitization and mast cell degranulation, yet their clinical benefit on anaphylactic symptoms is poorly documented. Here we investigated whether Treg action during the effector arm of the allergic response alleviates anaphylaxis.We used a validated model of IgE-mediated passive systemic anaphylaxis, induced by intravenous challenge with DNP-HSA in mice passively sensitized with DNP-specific IgE. Anaphylaxis was monitored by the drop in body temperature as well as plasma histamine and serum mMCP1 levels. The role of Treg was analyzed using MHC class II-deficient (Aβ(°/°)) mice, treatment with anti-CD25 or anti-CD4 mAbs and conditional ablation of Foxp3(+) Treg in DEREG mice. Therapeutic efficacy of Treg was also evaluated by transfer experiments using FoxP3-eGFP knock-in mice.Anaphylaxis did not occur in mast cell-deficient W/W(v) mutant mice and was only moderate and transient in mice deficient for histamine receptor-1. Defects in constitutive Treg, either genetic or induced by antibody or toxin treatment resulted in a more severe and/or sustained hypothermia, associated with a rise in serum mMCP1, but not histamine. Adoptive transfer of Foxp3(+) Treg from either naïve or DNP-sensitized donors similarly alleviated body temperature loss in Treg-deficient DEREG mice.Constitutive Foxp3(+) Treg can control the symptomatic phase of mast cell and IgE-dependent anaphylaxis in mice. This might open up new therapeutic avenues using constitutive rather than Ag-specific Treg for inducing tolerance in allergic patients.

Keywords

CD4-Positive T-Lymphocytes, Science, T-Lymphocytes, Regulatory, Mice, Animals, Mast Cells, Anaphylaxis, Serum Albumin, [SPI.OTHER] Engineering Sciences [physics]/Other, Q, R, Histocompatibility Antigens Class II, Interleukin-2 Receptor alpha Subunit, Forkhead Transcription Factors, Adoptive Transfer, Mice, Inbred C57BL, Medicine, Female, Dinitrophenols, Research Article, Histamine, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Average
Top 10%
Green
gold