Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochimica et Biophy...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Obese and anorexic yeasts: Experimental models to understand the metabolic syndrome and lipotoxicity

Authors: Sepp D, Kohlwein;

Obese and anorexic yeasts: Experimental models to understand the metabolic syndrome and lipotoxicity

Abstract

Lipotoxicity is the pathological consequence of lipid overflow in non-adipose tissue, mediated through reactive lipid moieties which may even lead to lipid-induced cell death (lipoapoptosis). This derailment of cellular and organismal fat homeostasis is the consequence of obesity due to continued over-feeding, and contributes substantially to the pathogenesis of insulin resistance, type 2 diabetes mellitus and cardiovascular disease, which are all components of the metabolic syndrome. Now, does yeast, a single-celled eukaryote, ever suffer from the metabolic syndrome and what can we potentially learn from studies in this organism about the underlying molecular mechanism that lead to lipid-associated pathologies in human cells? In this review I will summarize the remarkably conserved metabolic and regulatory processes relevant to establishing cellular energy and lipid homeostasis, as well as recent findings that provide detailed insights into the molecular mechanisms underlying fat-induced cellular malfunction and cell death, with potential implications also for mammalian cells.

Related Organizations
Keywords

Metabolic Syndrome, Fatty Acids, Lipase, Saccharomyces cerevisiae, Models, Biological, Anorexia, Schizosaccharomyces, Animals, Humans, Lipid Peroxidation, Obesity

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%