Bcl-2 stabilization by paxillin confers 5-fluorouracil resistance in colorectal cancer
Bcl-2 stabilization by paxillin confers 5-fluorouracil resistance in colorectal cancer
5-Fluorouracil (5-FU) is chemotherapeutic agent widely used for the treatment of colorectal cancer. Unfortunately, advanced colorectal cancer is often resistance to such chemotherapy and poor outcome. An adaptor protein paxillin (PXN) is phosphorylated at Y31/Y118 (pPXN-Y31/Y118) by Src contributes to cell mobility and Ser (S)272 of PXN in LD4 domain is important to the interaction between PXN and Bcl-2. We thus hypothesized that pPXN-Y31/Y118 may be required for Bcl-2 protein stability via PXN interacting with Bcl-2 to confer 5-FU resistance in colorectal cancer. Mechanistically, pPXN-S272 is phosphorylated through pPXN-Y31/Y118-mediated p21 protein-activated kinase 1 (PAK1) activation and pPXN-S272 is required for PXN to interact with Bcl-2. The interaction between PXN and Bcl-2 is essential for Bcl-2 protein stability through phosphorylation of Bcl-2 at S87 (pBcl-2-S87) by pPXN-Y31/Y118-mediated ERK activation. An increase in Bcl-2 expression by PXN is responsible for resistance to 5-FU. The resistance to 5-FU can be abolished by inhibitor of Src and PAK1 or Bcl-2 antagonist in cell and animal models. Among patients, Bcl-2 expression is positively correlated with expression of PXN and pPXN-S272, respectively. Patients with high PXN/high Bcl-2 or high pPXN-S272/high Bcl-2 tumors are commonly to have an unfavorable response to 5-FU-based chemotherapy, compared with patients who have high PXN, high pPXN-S272 or high Bcl-2 tumors alone. Therefore, we suggest that Src, PAK1 or Bcl-2 inhibitor may potentially overcome the resistance of 5-FU-based chemotherapy and consequently to improve outcomes in patients with PXN/Bcl-2 and pPXN-S272/Bcl-2-positive tumors.
- Chung Shan Medical University Hospital Taiwan
- Taipei Medical University Taiwan
- Chung Shan Medical University Taiwan
Male, Mutation, Missense, Gene Expression Regulation, Neoplastic, Amino Acid Substitution, Proto-Oncogene Proteins c-bcl-2, p21-Activated Kinases, Drug Resistance, Neoplasm, Cell Line, Tumor, Humans, Female, Fluorouracil, Paxillin, Colorectal Neoplasms, Follow-Up Studies, Retrospective Studies
Male, Mutation, Missense, Gene Expression Regulation, Neoplastic, Amino Acid Substitution, Proto-Oncogene Proteins c-bcl-2, p21-Activated Kinases, Drug Resistance, Neoplasm, Cell Line, Tumor, Humans, Female, Fluorouracil, Paxillin, Colorectal Neoplasms, Follow-Up Studies, Retrospective Studies
16 Research products, page 1 of 2
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).38 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
